电磁感应现象及电磁在生活中的应用
摘要:电磁感应,也称为磁电感应现象是指放在变化磁通量中的导体,会产生电动势。
此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流。
电磁反应是一个复杂的过程,其运用到现实生活中的技术(例如:电磁炉、微波炉、蓝牙技术、磁悬浮列车等等)。
是经过很多人的探索和努力一步一步走到现在的。
正文:
电磁感应的定义:闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。
本质是闭合电路中磁通量的变化。
由电磁感应现象产生的电流叫做感应电流。
电磁感应的发现:1831年8月,法拉第把两个线圈绕在一个铁环上,线圈A 接直流电源,线圈B接电流表,他发现,当线圈A的电路接通或断开的瞬间,线圈B中产生瞬时电流。
法拉第发现,铁环并不是必须的。
拿走铁环,再做这个实验,上述现象仍然发生。
只是线圈B中的电流弱些。
为了透彻研究电磁感应现象,法拉第做了许多实验。
1831年11月24日,法拉第向皇家学会提交的一个报告中,把这种现象定名为“电磁感应现象”,并概括了可以产生感应电流的五种类型:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。
法拉第之所以能够取得这一卓越成就,是同他关于各种自然力的统一和转化的思想密切相关的。
正是这种对于自然界各种现象普遍联系的坚强信念,支持着法拉第始终不渝地为从实验上证实磁向电的转化而探索不已。
这一发现进一步揭示了电与磁的内在联系,为建立完整的电磁理论奠定了坚实的基础。
电磁感应是指因磁通量变化产生感应电动势的现象。
电磁感应现象的发现,乃是电磁学中伟大的成就之一。
它不仅让我们知道电与磁之间的联系,而且为电与磁之间的转化奠定了基础,为人类获取巨大而廉价的电能开辟了道路,在实用上有重大意义。
电磁感应现象的发现,标志着一场重大的工业和技术革命的到来。
事实证明,电磁感应在电工、电子技术、电气化、自动化方面的广泛应用对推动社会生产力和科学技术的发展发挥了重要的作用。
若闭合电路为一个n匝的线圈,则又可表示为:式中n为线圈匝数,ΔΦ为磁通量变化量,单位Wb ,Δt为发生变化所用时间,单位为s.ε为产生的感应电动势,单位为V。
磁通量:设在匀强磁场中有一个与磁场方向垂直的平面,磁场的磁感应强度为B,平面的面积为S。
(1)定义:在匀强磁场中,磁感应强B与垂直磁场方向的面积S的乘积,叫做穿过这个面的磁通量。
(2)公式:Φ=BS
当平面与磁场方向不垂直时:
Φ=BS⊥=BScosθ(θ为两个平面的二面角)
(3)物理意义
穿过某个面的磁感线条数表示穿过这个面的磁通量。
(4)单位:在国际单位制中,磁通量的单位是韦伯,简称韦,符号是Wb。
1Wb=1T·1m2=1V·s。
电磁感应现象
(1)电磁感应现象:闭合电路中的一部分导体做切割磁感线运动。
(2)感应电流:在电磁感应现象中产生的电流。
(3)产生电磁感应现象的条件:
①两种不同表述
a.闭合电路中的一部分导体与磁场发生相对运动
b.穿过闭合电路的磁场发生变化
②两种表述的比较和统一
a.两种情况产生感应电流的根本原因不同
闭合电路中的一部分导体与磁场发生相对运动时,是导体中的自由电子随导体一起运动,受到的洛伦兹力的一个分力使自由电子发生定向移动形成电流,这种情况产生的电流有时称为动生电流。
穿过闭合电路的磁场发生变化时,根据电磁场理论,变化的磁场周围产生电场,电场使导体中的自由电子定向移动形成电流,这种情况产生的电流有时称为感应电流
b.两种表述的统一
两种表述可统一为穿过闭合电路的磁通量发生变化。
③产生电磁感应现象的条件
不论用什么方法,只要穿过闭合电路的磁通量发生变化,闭合电路中就有电流产生。
条件:a.闭合电路;b.做切割磁感线运动。
感应电动势
(1)定义:在电磁感应现象中产生的电动势,叫做感应电动势。
从低电势位置指向高电势位置。
(2)产生感应电动势的条件:穿过回路的磁通量发生变化。
(3)物理意义:感应电动势是反映电磁感应现象本质的物理量。
(4)方向规定:内电路中的感应电流方向,为感应电动势方向。
5、反电动势:在电动机转动时,线圈中也会产生感应电动势,这个感应电动势总要削弱电源电动势的的作用,这个电动势称为反电动势。
感应电流产生的条件
1.电路是闭合且通的。
2.穿过闭合电路的磁通量发生变化。
3.电路的一部分在磁场中做切割磁感线运动(切割磁感线运动就是为了保证闭合电路的磁通量发生改变)(如果缺少一个条件,就不会有感应电流产生).。
电磁感应现象中之所以强调闭合电路的“一部分导体”,是因为当整个闭合电路切割磁感线时,左右两边产生的感应电流方向分别为逆时针和顺时针,对于整个电路来讲电流抵消了。
电磁感应中的能量关系。
计算公式
1.[感应电动势的大小计算公式]
1)E=nΔΦ/Δt(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,ΔΦ/Δt:磁通量的变化率}。
2)E=BLVsinA(切割磁感线运动) E=BLV中的v和L不可以和磁感线平行,但可以不和磁感线垂直,其中sinA为v或L与磁感线的夹角。
{L:有效长度(m)}
3)Em=nBSω(交流发电机最大的感应电动势){Em:感应电动势峰值}。
4)E=B(L^2)ω/2(导体一端固定以ω旋转切割){ω:角速度(rad/s),V:速度(m/s),(L^2)指的是L的平方}。
2.磁通量Φ=BS {Φ:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积
(m2)} 计算公式△Φ=Φ1-Φ2 ,△Φ=B△S=BLV△t。
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}。
4.自感电动势E自=nΔΦ/Δt=LΔI/Δt{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),ΔI:变化电流,∆t:所用时间,ΔI/Δt:自感电流变化率(变化的快慢)}。
△特别注意Φ,△Φ,△Φ/△t无必然联系,E与电阻无关 E=n△Φ/△t 。
电动势的单位是伏V ,磁通量的单位是韦伯Wb ,时间单位是秒s。
右手定则
伸开右手,使大拇指跟其余四个手指垂直,并且都跟手掌在一个平面内,把右手放入磁场中,让磁感线垂直穿过手心,大拇指指向导体运动的方向,那么其余四个手指所指的方向就是感应电流的方向。
因磁通量变化产生感应电动势的现象(闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应)。
1820年H.C.奥斯特发现电流磁效应后,许多物理学家便试图寻找它的逆效应,提出了磁能否产生电,磁能否对电作用的问题,1822年D.F.J.阿喇戈和A.von洪堡在测量地磁强度时,偶然发现金属对附近磁针的振荡有阻尼作用。
1824年,阿喇戈根据这个现象做了铜盘实验,发现转动的铜盘会带动上方自由悬挂的磁针旋转,但磁针的旋转与铜盘不同步,稍滞后。
电磁阻尼和电磁驱动是最早发现的电磁感应现象,但由于没有直接表现为感应电流,当时未能予以说明。
1831年8月,M.法拉第在软铁环两侧分别绕两个线圈,其一为闭合回路,在导线下端附近平行放置一磁针,另一与电池组相连,接开关,形成有电源的闭合回路。
实验发现,合上开关,磁针偏转;切断开关,磁针反向偏转,这表明在无电池组的线圈中出现了感应电流。
法拉第立即意识到,这是一种非恒定的暂态效应。
紧接着他做了几十个实验,把产生感应电流的情形概括为 5 类:变化的电
流,变化的磁场,运动的恒定电流,运动的磁铁,在磁场中运动的导体,并把这些现象正式定名为电磁感应。
进而,法拉第发现,在相同条件下不同金属导体回路中产生的感应电流与导体的导电能力成正比,他由此认识到,感应电流是由与导体性质无关的感应电动势产生的,即使没有回路没有感应电流,感应电动势依然存在。
后来,给出了确定感应电流方向的楞次定律以及描述电磁感应定量规律的法拉第电磁感应定律。
并按产生原因的不同,把感应电动势分为动生电动势和感生电动势两种,前者起源于洛伦兹力,后者起源于变化磁场产生的有旋电场。
电磁感应现象是电磁学中最重大的发现之一,它显示了电、磁现象之间的相互联系和转化,对其本质的深入研究所揭示的电、磁场之间的联系,对麦克斯韦电磁场理论的建立具有重大意义。
电磁感应现象在电工技术、电子技术以及电磁测量等方面都有广泛的应用。