传感器及其接口技术
2. 关于输入输出关系的静态特性 (1)精度 表示测量结果与被测的“真值”的接近程度。一 般用“极限误差”或极限误差与满量程的比值按 百分数给出。 (2)重复性 反映传感器在工作条件不变的情况下,重复地输 入某一相同的输入值,其输出值的一致性,其意 义与精度类似。 (3)线性度 也称非线性,表示传感器输出与输入之间的关 系曲线与选定的工作曲线的靠近程度,采用工作 直线与实际工作曲线之间的最大偏差值与满量程 输出之比来表示。
n = 60N/Zt
n—转速 r/min t –测量时间 s N ---t内的脉冲个数 Z --- 圆盘上的缝隙个数
3. 力、力矩传感器
利用应变片可以制成应力传感器、力传感器和 力矩传感器,还可将应变片直接贴在被检测部分 来检测力、压力和力矩的大小,所使用的应变片 有电阻丝式、金属箔式和半导体式。
4.1.4 传感器的分类 传感器的分类方法有多种; 1、 按被测物理量的性质分;位移传感器、温
度传感器、压力传感器等等;
2、按工作机理分;电阻式、电感式、电容式、
光电式;
3、按照输出信号的性质分类;可分为开关型
(二值型) 、数字型和模拟型,如下图所示:
1 开关型
开关型传感器的二值就是 “1”和“0”或开(ON)和关 (OFF)。这种“l”和“0”数 字信号可直接传送到微机 进行处理,使用方便。
2 模数(A/D)转换器
模数转换器把输入的模拟信号经过量化和 编码后,转换成数字信号的器件。 根据比较的工作原理可分为直接比较型和 间接比较型两大类。
(1) 逐次逼近型A/D转换器
结构与工作原理
去留码规则, UI >= UF 保留 1 UI <UF 不保留 1, 置零 UF = UREF(2-1a1 + 2-1a2 ….. +2-nan)
3 模拟型 模拟型传感器的输出是与输入物理量变化相 对应的连续变化的电量。输入与输出可以是线 性的也可以是非线性的。
4.1.5 机电一体化系统对传感器的基本要求 1. 精度和灵敏度高、响应快、稳定性好、信噪比 高; 2. 体积小、重量轻、对整机的适应性好; 3. 安全可靠、寿命长; 4. 便于与计算机连接; 5. 不易受被测对象性(如电阻、导磁率)的影响,也 不影响外部环境; 6. 对环境条件适应能力强; 7. 现场处理简单、操作性能好; 8. 价格便宜。
12位逐次逼近式A/D转换器AD574与单片机8051的接口电路
(2) 双斜积分式A/D转换器
结构与工作原理
N1 N2 U1 U REF
ICL 7109是一种高精度、低噪声、低漂移、价格 低廉的双积分型12位A/D转换器。在要求转换速 度不太高的场合,如用于称重测力、测温度等各 种传感器信号的高精度测量系统中时,可采用廉 价的双积分式12位A/D转换器ICL 7109。 ICL 7109主要有如下特性: (1) 高精度(12位) (2) 低噪声(典型值为15μVP-P); (3)低漂移(<1μV/℃); (4)高输入阻抗(典型值1012Ω); (5)低功耗(<20mW); (6)转换速度最快达30次/秒,当采用3.58MHz晶振 作振源时,速度为7.5次/秒;
2. 速度、加速度传感器 检测转速的传感器有测速发电机、光电、磁 电式转速传感器。 检测加速度可用电容式或压电式加速度传感 器。 检测直线运动速度时,可以将直线运动变换 成回转运动,然后再用转速传感器检测。采用数 字型传感器检测位移时,也可同时检测运动速度。 对于计数型传感器,可通过检测其脉冲频率 来得到运动速度的数据。代码型传感器,则可通 过检测其代码变换周期来确定运动的速度。
4.2 传感器与微机的接口技术
输入到微型机的信息必须是微型机能够处理的数字量信 息。传感器的输出形式可分为模拟量、数字量和开关量。与 此相应的有三种基本接口方式,见下表。
4.2.1 数字量、开关量的接口 可以通过缓冲器直接输入到计算机数据总线上。 4.2.2 模拟量的接口 1. 模拟量的数字化过程 (1) 时间断续
采样保持器的组成与工作原理
单片集成采样/保持电路LF198
在LF198中,采用了双极型与CMOS型混合工艺。当CH =0.01uF时,输出电压的下降率达到10-3 mv/s 以下.
4 模拟多路开关
在机电一体化系统中,经常对许多传感器信 号进行采集和控制。如果每一路都单独采用各自 的输入回路,即每一路都采用放大、采样/保持、 A/D等环节,不仅成本比单路成倍的增加,还会 导致系统体积庞大,且由于模拟器件,阻容元件 参数和特性不一致,对系统的校准带来很多困难。 因此除特殊情况下,多采用公共的采样/保持及 A/D转换电路。要实现这种设计,往往需要采用 模拟多路开关,将各路信号按照一定的顺序切换 到后续电路中。
4.1.6 机电一体化系统常用传感器 1. 位移检测传感器 位移测量是直线位移测量和角位移测量的总称, 位移测量在机电一体化领域中应用十分广泛,这 不仅因为在各种机电一体化产品户常需位移测量, 而且还因为速度、加速度力、压力、扭矩等参数 的测量都是以位移测量位移为基础的。 直线位移传感器主要有:电感传感器、差动变 压器传感器、电容传感器、感应同步器和光栅传 感器。 角位移传感器主要有:电容传感器、旋转变压 器和光电编不一样,它所测量 的不是一段距离的变化量,而是通过检测,确定 是否已到某一位置。因此,它只需要产生能反映 某种状态的开关量就可以了。 位置传感器分接触式和接近式两种。所谓接 触式传感器就是能获取两个物体是否己接触的信 息的一种传感器;而接近式传感器是用来判别在 某一范围内是否有某—物体的一种传感器。
(1) 接触式位置传感器
这类传感器用微动开关之类的触点器件便可构成, 它分以下两种 a. 由微动开关制成的位置传感器
二维矩阵式配置的位置传感器
1、柔软电极 2、柔软绝缘体
(2) 接近式位置传感器 接近式位置传感器按其工作原理主要分:①电磁 式;②光电式;③静电容式;④超声波式;⑤气 压式等。其基本工作原理可用下图表示出来。
接近式位置传感器的工作原理
5 视觉传感器
视觉传感器在机电一体化系统中的作用有:1、 确定对象物的位置与姿势; 2、图像识别:确定对象物的特征(识别符号、读出 文字、识别物体); 3、形状、尺寸检验:检查零件形状和尺寸方面的 缺陷。 在机电一体化系统中采用的视觉传感器有光导 摄像管摄像机、固体半导体摄像机、激光视觉传感 器等。固体半导体摄像器件有CMOS型(金属氧化 物集成电路)、CCD型(电荷耦合器件)以及CMOS和 CCD混合型等。
4.1.1 传感器的定义 传感器: 传感器是一种以一定的精确度将 被测量(如位移、力、加速度等)转换为与之有确 定对应关系的、易于精确处理和测量的某 种物理量(如电量)的测量部件或装置。
4.1.2 组成 组成:敏感元件、转换元件、电子线路等 组成。
1 敏感元件 直接感受被测量、并以确定关系输出 物理量。如弹性敏元件将力转换为位移或应变输出。 2 转换元件 将敏感元件输出的非电物理量(如位 移、应变、光强等)转换成电量参数(如电阻、电感、 电容等)等。 3 基本转换电路 将电路参数量转换成便于测量的 电量,如电压、电流、频率等。 直接转换与间接转换
AD574A是美国模拟数字公司(Analog)推出的单 片高速12位逐次比较型A/D转换器,内置双极性 电路构成的混合集成转换芯片,具有外接元件少, 功耗低,精度高等特点,并且具有自动校零和自 动极性转换功能,只需外接少量的阻容件即可构 成一个完整的A/D转换器,其主要功能特性如下: 分辨率:12位 非线性误差:小于±1/2LBS或±1LBS 转换速率:25us 模拟电压输入范围:0—10V和0—20V,0— ±5V和0—±10V两档四种 电源电压:±15V和5V 数据输出格式:12位/8位
特性曲线中如果设输出状态 从断到通时的输入值为INon, 而从通到断时的输入值为 INoff,则特性满足 INoff<INon INoff与INon的差称为磁滞 宽度或瞬动(snap)宽度。
二值型传感器的实用特性
2 数字型 数字型传感器有计数型和代码型两大类。 其中计数型又称脉冲数字型;
传感器的组成
4.1.3 传感器的特性
传感器比较常用的性能指标有以下几种 1. 关于输入量的特性: (1) 量程或测量范围 传感器预期要测量的被测量值的范围,一般 用传感器允许测量的上下极限值来表示,其中上 限值也称为满量程FS。 (2) 过载能力 传感器允许承受的最大输入量(被测量),通常用 一个最大允许值或满量程的百分比来表示。
max 1 100% YFS
1
YFS
非线性误差(线性度) 输出满量程
max 最大非线性绝对误差
(4) 灵敏度 传感器输入增量与输出增量之比;
(5) 稳定性(温度漂移,时间零漂) 时间零漂: 在规定的时间内,在温度不变的条件下, 零输出的变化; 温度漂移:当温度发生变化时,其输出特性的变化, 通常用零点输出变化值表示,也可以用它与满量 程的比值来表示。
3. 动态响应特性 在被测量的物理量随时间变化的情况下,传感器的输 出能否很好地追随输入量的变化是一个很重要的问题。有 的传感器尽管其静态持性非常好,但由于不能很好追随输 入量的快速变化而导致严重误差,这种动态误差若不注意 加以控制,可以高达百分之几十其至百分之百。在被测信 号变化速度较快的情况下要求我们要认真注意传感器的动 态响应持性。 频率响应特性 幅频特性 相频特性 阶跃响应特性 时间常数 上升时间 过冲量(超调量) 固有频率 阻尼比(对数减缩)