空分工艺流程
9
二、我公司配套的空分 装置的流程和特点
10
我公司采用的空分装置特点
• 本界区空分装臵共三期六套, 其中主精馏塔由杭州杭氧股份 公司制造,单套空分装臵制氧 能力48,000Nm3/h,制氮能力 80000Nm3/h,同时副产工厂空 气、仪表空气、液氮和液氧。 • 本装臵生产的纯度为99.8%的 氧气主要供下游气化装臵使用, 作为气化炉的原料气参加反应; • 纯度为99.99%的氮气供下游工 艺生产使用,作为保护气和吹 扫用气; • 副产的工厂空气、仪表空气供 所有化工区各分厂和正常生产 动力车间生产装臵使用,作为 仪表气源和吹扫用气。
19
在下塔顶部抽取压力氮气,经低压板式换热器复热后出冷箱,进 入氮气管网。 从上塔中部抽取一定量的氩馏份送入增效粗氩塔,氩馏份经增效 粗氩塔精馏后得到粗氩气。粗氩气经过低压板式换热器复热后出冷箱, 可以与污氮气汇合去水冷塔也可以单独作为粗氩气产品。 从上塔顶部抽取低压纯氮气经过冷器、低压板式换热器复热后送 入水冷塔或送入用户管网。 从上塔上部引出污氮气经过冷器、低压板式换热器和高压板式换 热器复热出冷箱后分成两部分:一部分进入分子筛系统的蒸汽加热器, 作为分子筛再生气体,其余污氮气去水冷塔。
22
•
2、干式过滤器 1)卷帘式过滤器 也叫干带式空气过滤器。它由一个电动 机变速传动,随着灰尘的积聚,空气通过干带的阻力增大, 当超过规定值时,带电接点的差压计将电机接通,使干带 转动。当阻力恢复正常后,即自动停止转动。 2)袋式过滤器 空气从顶部进入,经分配器后进入袋内, 经滤袋过滤后由下部流出。积聚在袋上的灰尘由反吹风机 吹落,当灰尘在滤袋上积累到阻力达980Pa时,反吹罗茨 风机及反吹环自动启动,反吹空气通过胶皮软管进入反吹 装臵,并设有限位开关,能上下来回移动。主要用于北方, 因南方空气湿度大,灰尘粘在布上,很难除去。 3)脉冲式过滤器,又叫自洁式过滤器,结构:由高效过滤筒、 文氏管、自洁专用喷头、反吹系统、控制系统等组成。 使用方式:在吸气负压作用下,空气穿过高效过滤筒,粉 尘由于重力、静电和接触被阻留。 这种过滤器适用于尘量较大的地区,过滤效率高且便于维 护。我们选用的就是这种.
• 原理:是根据空气中各组分的沸点不同,经加压、预此过
程一直进行到气、液处于平衡状态。这时,液相由于蒸发,使氮组 分减少,同时由于气相冷凝的氧也进入液相,因此液相的氧浓度增
加了,同样气相由于冷凝,使氧组分减少,同时由于液相的氮进入气
相,因此气相的氮浓度增加了.
16
组成空分装置的几个系统
• • • • • • • • • • • • • • 整个空分装臵必须解决以下几个问题: 一、 如何清除空气中的杂质; 二、 如何为装臵提供带压的空气; 三、 如何将空气冷却到液化温度; 四、 如何将空气分离成氧、氮; 五、 如何将产品送到用户; 六、 如何控制制氧过程中的正常进行。 为此,空分装臵中相对应的建立了以下几个系统: 一、 杂质的清除系统(空气过滤器和纯化系统); 二、 空气加压系统(空压机及增压机系统); 三、 空气的冷却和液化系统(预冷系统和膨胀机、换热器系统); 四、 空气的精馏系统(分馏塔系统); 五、 产品的输送、贮存系统(压氮系统和液体贮存系统); 六、 仪电控制系统。
12
装置性能参数
产 品 氧 气 产量Nm3/h 48,000 纯度 99.8 O2
压力 MPaG
备注 内压缩
4.7
液 氧
氮气I 氮气II 氮气III
300
25,000 10,000 55,000
99.8 O2
≤10ppm O2 ≤10ppm O2 ≤10ppm O2
0.16
0.4 4.1 0.008
折合气态
下塔抽取 开车时用气量 包含在氮气I中 暂通水冷塔
13
装置性能参数
液 氮 300 ≤10ppm O2 无油、无尘 压力露点:≤40℃ 0.2 折合气态 增压机一级后抽 出
仪表空气
6000
0.7
装置空气
5000
无油、无尘 压力露点:≤40℃
无油、无尘 压力露点:≤40℃
0.4
分子筛后抽出
气化炉开工空 气
-195.8 -183 -185.7
-209.86 -218.4 -189.2
-147 -119 -122
6
•
1、低温法:
并利用大部分由透平膨胀机提供的冷量使之液化,再进行精馏, 从而获得所需要的氧气、氮气及其它稀有气体的过程。具体原理 为空气经过增压膨胀对外作功处于冷凝温度,当穿过比它温度低的 氧、氮组成的液体层时,由于气、液之间温度差的存在,要进行热 交换,温度低的液体吸收热量开始蒸发,其中氮组分首先蒸发,温度
1
一、概述
2
空分的含义
• 空分的含义:空分,顾名思义即空气的分 离,是利用不同的方法将空气中的各组分 分离开来,从而获得所需要的氧气、氮气 及一些稀有气体的过程。
3
空分行业介绍
1903年,德国人卡尔· 林德发明制 造了世界上第一台深冷(低温)法生产 氧气的空分设备,采用高压节流单塔流 程,产氧量10m3/h。 到目前为止,世界上从事空分行业 的大型公司有: 德国林德 法国液空 英国BOC 美国APCI和Praxair 中国杭氧、川空、开空 1934年,中国首次从日本、德国引 进一套两国拼凑的15m3/h空分设备,由 日本人安装于青岛“中国瓦斯工厂”。
7
• 多次的重复上述过程,气相的氮浓度就不断增加,液相的氧浓度也 能不断的增加.这样经过多次的蒸发与冷凝就能完成整个精馏过程, 从而将空气中的氧和氮分离开来。
• •
2、吸附法:
原理:利用分子筛对不同的分子具有选择性吸附的特点,有 的分子筛(如5A、13X等)对氮具有较强的吸附性能,让氧分子通 过,可得到较高纯度的氧气;有的分子筛(碳分子筛等)对氧具 有较强的吸附性能,让氮分子通过,可得到较高纯度的氮气,从 而实现空气的分离。但吸附法目前的氧气纯度只有93%左右。
•
•
8
空分设备的应用
• • • • • • • • • • 一、钢铁行业:高炉炼铁的富氧粉煤送风、转炉氧气顶 吹、电炉富氧炼钢;氩气参与炼钢冶炼。 二、有色金属富氧冶炼; 三、机械工业,金属焊接等; 四、石化工业,塑料,化纤合成,保护气; 五、化肥工业合成氨用氮,造气用氧; 六、煤气化工程造气用氧; 七、国防工业:氢氧发动机、火箭燃料、液氧炸药; 八、浮法玻璃锡池氮气保护; 九、低温工程,航天工业; 十、医用氧,氮气保鲜,半导体等.
4
• 1949年,全国只有进口的小空分设备89套,总容量只有3415m3/h。 1953年底,哈尔滨第一机械厂首次试制成功了两套30m3/h空分设备。 杭氧从1955年试制空分设备,1956年起形成批量生产。至2000年底全 国共生产空分设备130多种规格,8339套,其中1000m3/h以上的大中 空分设备580套。全国空分生产氧的能力达277万m3/h。最近几年的空 分设备大型化发展更加迅猛。我国的中大型空分设备发展至今,期间 经历了六代变革: • 第一代:铝带蓄冷器型; • 第二代:石头蓄冷器型;
• 第三代:可逆式切换板翅换热器型;
• 第四代:常温分子筛吸附型; • 第五代:分子筛吸附+增压透平膨胀机型; • 第六代:规整填料塔+无氢制氩型 。 • 目前世界上最大的空分设备是法液空供加拿大长湖化工项目配套的 113880m3/h,我国现在已具备生产60000m3/h等级大型空分设备的能力。
5
空气分离的方法
•
空气中的主要成分是氧气、氮气、氩气、二氧化碳以及 一些其它气体和杂质。它们在空气中分别以分子的状态存在, 数目非常多,并且永不停息地作无规则的运动,均匀地相互 搀混在一起,要将它们分开,目前主要有三种方法:低温法、 吸附法、膜分离法。空气中主要组分的性质如下:
名 化 称 学 符 号 氮 N2 氧 O2 氩 Ar 沸点℃ 熔点℃ 101.325KPa 101.325KPa 密度 Kg/m3 气体 1.25 1.43 1.782 Kg/l 液体 0.81 1.14 1.4 临 界 点 ℃
•
•
18
•
•
•
•
• •
净化后的空气分为两股:一股进入低压板式换热器,与返流的气 体换热后出换热器底部后进入下塔;另一股去空气增压机。 进入空气增压机的空气经增压机第一段增压后分为两股:一股直 接出增压机,经后过冷器冷却后进入膨胀机的增压风机中增压,然后 被冷却器冷却至常温后进入高压板式换热器,再从高压板式换热器中 部抽出进入膨胀机去膨胀。膨胀后的空气送入下塔。 另一股空气在增压机的第二段继续增压并经后冷却器冷却至常温 后进入高压板式换热器,与高压液氧及返流污氮气体换热。这部分高 压空气从换热器底部抽出经节流进入下塔。 空气经下塔初步精馏后,获得液空和污液氮,并经过冷器过冷后 节流进入上塔。经上塔进一步精馏后,在上塔底部获得液氧,并经液 氧泵压缩后进入高压板式换热器,复热后出冷箱,进入氧气管网。另 抽取液氧送入液氧贮存系统。 在下塔顶部获得纯液氮,送入液氮贮存系统。
11
装置的流程形式
• 我们的设备采用的是单泵内压缩、空气增压循环、膨胀空
气进下塔的内压缩流程。
• 空分装臵流程主要分外压缩、内压缩 • 外压缩就是利用氧气压缩机将空分装臵出来的低压产品氧气压缩至 用户所需要的压力等级。 • 内压缩是采用液氧泵对产品液氧进行压缩,然后换热汽化的一种流 程形式。 • 内压缩流程分类 内压缩流程的形式比较多,根据流程形式大致分为三种: 1、单泵、双(多)泵内压缩流程。 2、空气增压循环和氮气增压循环。 3、膨胀空气进上塔和膨胀空气进下塔。 • 内压缩流程的优点 1、取消了氧压机,无高温气氧,火险隐患小,安全性好。 2、从主冷大量抽取液氧,使碳氢化合物的积聚的可能性降低。
•
下面分别介绍流程中的各个系统。
20
1、空气过滤系统