柔性直流输电技术概述1柔性直流输电技术简介柔性直流输电作为新一代直流输电技术,其在结构上与高压直流输电类似,仍是由换流站和直流输电线路(通常为直流电缆)构成。
与基于相控换相技术的电流源换流器型高压直流输电不同,柔性直流输电中的换流器为电压源换流器(VSC),其最大的特点在于采用了可关断器件(通常为IGBT)和高频调制技术。
详细地说,就是要通过调节换流器出口电压的幅值和与系统电压之间的功角差,可以独立地控制输出的有功功率和无功功率。
这样,通过对两端换流站的控制,就可以实现两个交流网络之间有功功率的相互传送,同时两端换流站还可以独立调节各自所吸收或发出的无功功率,从而对所联的交流系统给予无功支撑。
2. 技术特点柔性直流输电技术是采用可关断电压源型换流器和PWM技术进行直流输电,相当于在电网接入了一个阀门和电源,可以有效控制其通过的电能,隔离电网故障的扩散,还能根据电网需求,快速、灵活、可调地发出或者吸收一部分能量,从而优化电网潮流分布、增强电网稳定性、提升电网的智能化和可控性。
它很适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市电网供电、异步交流电网互联等领域。
柔性直流输电除具有传统直流输电的技术优点外,还具备有功无功单独控制、可以黑启动对系统强度要求低、响应速度快、可控性好、运行方式灵活等特点,目前,大容量高电压柔性直流输电技术已具备工程应用条件,并且具有以下优点:(1)系统具有2个控制自由度,可同时调节有功功率和无功功率,当交流系统故障时,可提供有功功率的紧急支援,又可提供无功功率紧急支援,既能提高系统功角稳定性,还能提高系统电压稳定性;(2)系统在潮流反转时,直流电流方向反转而直流电压极性不变,这个特点有利于构成既能方便地控制潮流又有较高可靠性的并联多端直流系统,实现多端之间的潮流自由控制;(3)柔性直流输电交流侧电流可被控制,不会增加系统的短路功率;(4)对比传统直流输电方式,采用多电平技术,无需滤波装置,占地面积很小;(5)各站可通过直流线路向对端充电,并根据直流线路电压采取不同的控制策略,因此换流站间可以不需要通讯;(6)柔性直流输电具有良好的电网故障后快速恢复控制能力;(7)系统可以工作在无源逆变方式,克服了传统直流受端必须是有源网络,可以为无源系统供电。
3我国对柔性直流输电技术的需求3· 1可再生能源开发在能源清洁化的新趋势下,风能、太阳能等可再生能源开发己经成为全球关注的重点。
我国有着极其丰富的风能资源,实际可开发量达230Gw,主要分布在东南沿海及其岛屿、西北、华北和东北地区。
除了少数风能就地消纳外,大部分风能都需要并入主网,实现远距离输送。
但由于可再生能源发电具有波动性和间歇性的特点,大规模并网将给系统调峰调频、运行调度、功率预测、供电质量等带来巨大挑战,目前可再生能源的并网接入方案还不够理想,采用常规的交直流输电技术并网还不够经济。
而利用柔性直流输电具有环保、效率高、对电网干扰小的优点,为实现可再生能源的可靠接入提供了一种可行的技术选择。
3·2城市电网发展随着城市社会经济的高速发展,城市电网作为主要负荷中心,负荷密度越来越高,用电负荷量、质的需求不断增加,以交流输电为主的城市电网电能输送面临越来越大的困难和挑战。
(1)环境保护和有限的土地资源严重制约了大容量电源的建设。
对于大型城市,从外地输入大量电力的必然趋势使得城市电网对区域大电网的依赖性大大增强,电网安全稳定运行的压力越来越大。
(2)现代的城市线路走廊资源日益紧张,架空送电线路走廊匮乏,增加了对地下电缆等新型输电方式的迫切性。
(3)随着城市用电负荷和供电容量的增加,动态无功不足,短路电流超标日益成为大型城市电网的重要问题,如上海500kv短路电流即将达到63,对系统中的开关设备及其他网络元件的安全运行造成了极大的威胁。
(4)城市负荷对于供电可靠性以及电能质量的要求越来越高。
谐波污染、电压间断、电压波形闪变等问题使一些敏感设备如工业过程控制装置、电子系统等失灵,往往造成巨大的经济损失。
虽然交流电缆输电解决了城市电网面临的一些问题,但是其潮流难以控制、短路电流超标等问题使其局限性日益凸显。
为了确保城市电网持续发展,需要研究运行灵活、可控性高的新型输电技术,针对性地解决城市电网电源支撑弱、无功电压支撑能力不足等关键问题。
3·3智能电网发展随着科技的进步和城市化、信息化水平的提高,智能楼宇、智能社区、智能城市相继出现,电动汽车智能家电等也将推广应用,电网智能化成为未来电网的必然趋势。
这对现有的输、配、用电方式提出了新的挑战。
利用交流对电动汽车充电装置供电需要进行AC·DC转换,不可避免地造成电能损失,同时充电产生的谐波也对电网形成不利影响。
在现有的交流电供电模式下,以IT设备为基础的智能家电的广泛使用同样面临AC·DC转换造成的巨大损失,也不利于实现太阳能等分布式电源的就地供应。
同时,分布式电源的大量接入将改变现有配电网结构和潮流分布,会引起谐波、三相电压不平衡等电能质量问题,对交流配电网的无功平衡、电压调节、控制等技术都提出了挑战,因此需要研究利用柔性直流输电技术灵活的潮流控制等优势,实现分布式电源与主网的协调运行。
4柔性直流输电技术应用领域展望4· 1有助实现可再生能源并网我国风电资源丰富,如张家口地处内蒙古高原与华北平原的交界处,域内风能资源可开发量超过IOGW,具备建设世界级大型风电场的良好条件。
而另外一风能资源丰富地区如东南沿海岛屿、西北地区等经济落后,交通不便,处于电网末端,要经过长距离输电才能并网。
地理条件、发电规模和风力发电特点的制约使得利用现有交流输电技术将这些“孤岛” 电源与电网连接困难较大,而且会对电网产生不利的影响,如可能引起谐振等。
因此,对于容量、距离等满足不了传统高压交直流输电经济可行性要求的风电场,利用柔性直流输电并网、对负荷中心进行供电具有明显的技术优势,如换流站可以自行换相,不需要借助外部电压源或同步调相机等来支持电能传输:柔性直流输电技术可以独立控制有功和无功,缓解风电场输出功率波动引起的电压波动问题,改善电能质量;当主网交流系统发生短路时,可以有效地隔离故障,保障风电场的稳定运行,并提供“黑启动”能力,帮助系统恢复。
鉴于这些优势,我国目前正在上海南汇风电场研究建设实施柔性直流输电技术并网示范工程,积累了重要的研究经验。
4.2便于实现分布式电源接入随着储能技术的日益成熟,采用太阳能等分布式电源实现家庭供电的智能楼宇、社区将相继出现,利用柔性直流输电技术搭建微电网,一方面将过剩的分布式电源接入主网,一一方面在分布式电源不足的情况下进行补充供电,既实现分布式电源的充分利用,又保障电网兼容各类电源和用户接入与退出的能力,满足用户多元化需求,实现电网和用户的供电安全可靠。
目前日本在这方面进行了大量研究,开发了交直流混合配电盘实现直流供电。
我国高科技家电的普及和日益扩大的智能化需求为柔性直流输电技术提供了一个广阔的空间。
另外,海上发电等一些小规模电源,装机容量小、供电质量不高。
采用交流输电进行并网在经济、技术上都难以满足要求。
利用柔性直流输电技术实现接入一方面可以保证这些地区的供电稳定,另一方面可以充分利用这些分布式电源,避免能源浪费或环境污染,如海上采油平台不再需要燃烧多余气体,而可以转换成电能传输到电网中。
4.3便于实现偏远孤立地区的供电我国一些偏远地区,如新疆、西藏的无电地区等远离电网,负荷轻而且日负荷波动大,其输电距离和输电容量尚不能很好满足传统高压交直流输电的经济性要求,地区与交流主网连接在技术、经济上都难以实施。
沿海岛屿、天然气井或原油井以及钻井平台等负荷供电也只能依靠就地电厂(火电厂),且往往是柴油发电机。
柔性直流输电技术不但可以通过直流电缆将交流主网中高效电厂(如坑口电厂或水电厂)的能源传输到偏远地区或孤岛负荷,促进地区经济发展,而且彻底消除就地电厂的污染和噪声问题,环保效益巨大。
4 ·4城市电网增容与直流供电由于土地资源的限制和城市电网建设环境要求的日益苛刻,利用交流架空线路增加城市电网输送容量的代价越来越昂贵。
而采用地埋式直流电缆进行输电,既可以回避线路走廊问题,又能够有效控制短路容量,提高输送容量,因此柔性直流输电技术将成为城市电网增容的可靠方式。
国外研究表明,把传统的高压交流线路改造成直流线路能够大幅度提高输送容量。
利用柔性直流输电技术对城市电网进行供电,一方面可以快速控制系统的有功和无功,解决电压闪变问题,改善供电的电能质量,防止敏感设备因电能质量问题造成的经济损失;另一方面可以灵活控制交流侧的电流,控制电网的短路容量,解决城市电网短路电流超标的问题,保证城市电网的供电安全。
另外随着城市电网中电动汽车充电装置、IT设备用电等直流负荷不断增长,利用柔性直流输电技术进行供电,可以有效避免交直流转换效率问题,降低谐波等对电网系统的危害,产生巨大的经济和社会效益,符合节能、环保、智能的发展趋势。
5总结柔性直流输电除了具备传统直流输电固有的优点以外,还具有4 象限运行、对交流系统要求低、可向无源网络供电,以及占地面积小等优势,因此在一些特定的场合,如长距离的跨海电缆送电、拥挤的城市供电、远距离向弱交流系统供电等得到比较多的应用。
同时由于它在功率反向时改变电流方向而电压极性不变,因此对于未来可能建设的直流电网是一种很好的解决方案。
但目前受到电压源型换流器件的工艺及参数水平、工作机制,以及线路故障后的恢复慢等限制,柔性直流输电仍然有许多局限性,如控制系统要求高、输送容量小、损耗大、造价高、输电距离短等等,因此还不能很好地应用于高电压、大容量、长距离送电,但这必将是柔性直流输电的一个重要发展方向。
未来随着电力电子器件、计算机控制等技术的不断发展,柔性直流输电的输送容量、电压等级将不断提高,而系统损耗和成本将逐渐下降,加上我国能源战略和能源结构的有序调整和完善,以及国内外工程运行经验的不断积累,柔性直流输电将会在更多领域得到更广泛的应用。