不动点定理及其应用摘要不动点定理是研究方程解的存在性与唯一性理论的重要工具之一.本文给出了线性泛函分析中不动点定理的几个应用,并通过实例进行了说明.同时,介绍了非线性泛函分析中的不动点定理——Brouwer不动点定理和Leray-Schauder不动点定理. 关键词不动点;不动点定理;Banach空间Fixed Point Theorems and Its ApplicationsAbstract The fixed point theorem is one of important tools in studying the existence and uniqueness of solution to functional equation .In this paper,the fixed theorem in linear functional analysis and its applications are introduced and the corresponding examples are given.Meanwhile,the Brouwer and Leray-Schauder fixed point theorems are also involved.Key Words Fixed point , Fixed point theorem, Banach Space不动点定理及其应用0 引言在线性泛函中,不动点定理是研究方程解的存在性与解的唯一性理论[1-3].而在非线性泛函中是研究方程解的存在性与解的个数问题[4],它是许多存在唯一性定理(例如微分方程,积分方程,代数方程等)的证明中的一个有力工具. 下面给出不动点的定义.定义 0.1设映射X X T →:,若X x ∈满足x Tx =,则称x 是T 的不动点.即在函数取值的过程中,有一点X x ∈使得x Tx =.对此定义,有以下理解.1)代数意义:若方程x Tx =有实数根0x ,则x Tx =有不动点0x .2)几何意义:若函数()x f y =与x y =有交点()00,y x 则0x 就是()x f y =的不动点.在微分方程、积分方程、代数方程等各类方程中,讨论解的存在性,唯一性以及近似解的收敛性始终是一个极其重要的内容. 对于许多方程的求解问题,往往转化为求映射的不动点问题,同时简化了运算.本文将对不动点定理及其变换形式在线性分析和非线性分析中的应用加以探索归纳.1 Banach 不动点定理及其应用 1.1相关概念首先介绍本文用的一些概念.定义1.1.1[3]设X 为距离空间,{}n x 是X 中的点列,若对任给的0>ε,存在0>N ,使得当N n m >,时,()ερ<n m x x ,.则称点列{}n x 为基本点列或Cauchy 点列.如果X 中的任一基本点列均收敛于X 中的某一点,则称X 为完备的距离空间.定义1.1.2[3]定义在线性空间上的映射统称为算子.定义1.1.3[3]给定距离空间()ρ,X 及映射T :X X →,若X x ∈满足x Tx =,则称x 是T 的不动点.1.2 Banach 不动点定理定理 1.2.1[3]设X 是完备的距离空间,距离为ρ.T 是由X 到其自身的映射,且对任意的X y x ∈,,不等式()(),,Tx Ty x y ρθρ≤成立,其中θ是满足不等式01θ≤<的常数.那么T 在X 中存在唯一的不动点.即存在唯一的X x ∈,使得x x T =.证明 在X 中任意取定一点0x ,令01Tx x =,12Tx x =,…,n n Tx x =+1,… 首先证明{}n x 是X 中的一个基本点列. 因为()()()()00101021,,,,Tx x x x Tx Tx x x θρθρρρ=≤=; ()()()()002212132,,,,Tx x x x Tx Tx x x ρθθρρρ=≤=; ……………………… 于是()()001,,Tx x x x n n n ρθρ≤+, ,3,2,1=n()()()()p n p n n n n n p n n x x x x x x x x +-++++++++≤,,,,1211ρρρρ()()0011,Tx x p n n n ρθθθ-+++++≤()()()0000,1,11Tx x Tx x np n ρθθρθθθ-≤--=. 又10<≤θ,故(),0∞→→n n θ即{}n x 是基本点列.由于X 完备,所以由定义1.1.1知{}n x 收敛于X 中某一点x .另外,由()(),,Tx Ty x y ρθρ≤知,T 是连续映射.在n n Tx x =+1中,令,∞→n 得x x T =,因此x 是T 的一个不动点.下面证明唯一性.设另有y 使y T y =,则()()(),,,,y x y T x T y x θρρρ≤=考虑到10<≤θ,则有(),0,=y x ρ即y x =.定理 1.2.2[3]设T 是由完备距离空间X 到其自身的映射,如果存在常数:1o θθ≤<以及自然数0n 使得(,)(,)n n T x T y x y ρθρ≤(,)x y X ∈ ()1那么T 在X 中存在唯一的不动点.证明 由不等式()1,0n T 满足定理1.2.1的条件,故0n T 存在唯一的不动点0x .现在证明0x 也是映射T 唯一的不动点.事实上10000()()()n n n T Tx T x T T x Tx +===可知,0Tx 是映射0n T 的不动点.由0n T 不动点的唯一性,可得00Tx x =,故0x 是映射T 的不动点.若T 另有不动点1x ,则由01111111n n n T x T Tx T x Tx x --=====知1x 也是0n T 的不动点.仍由唯一性,可得10x x =.1.3 Banach 不动点定理的应用1.3.1在讨论积分方程解的存在性与唯一性中的应用例1.3.1.1给定积分方程()()()()ds s x s t K t f t x ba ⎰+=,λ ()2其中()t f 是[]b a ,上的已知连续函数,()s t K ,是定义在矩形区域b s a b t a ≤≤≤≤,上的已知连续函数,证明当λ足够小时(λ是常数),()2式在[]b a ,上存在唯一连续解.证明 在[]b a C ,内规定距离()()()1212,max a t by y y x y x ρ≤≤=-令 ()()()()()ds s x s t K t f t Tx ba⎰+=,λ则当λ充分小时,T 是[][]b a b a C C ,,→的压缩映射. 因()()()()()1212,max a t bTx Tx Tx t Tx t ρ≤≤=-()()()()()()()()121212max ,max ,,,ba t baba tb aK t s x s x s dsK t s x s x s ds M x x λλλρ≤≤≤≤=-≤-≤⎰⎰其中()max ,ba t baM K t s ds ≤≤=⎰,从而当1M λ<时,T 是压缩映射,则由定理1.2.1知方程对于任一()[]b a C t f ,∈解存在并且唯一.例1.3.1.2 考虑微分方程初值问题()⎪⎩⎪⎨⎧===,,,00y y y x f dx dyx x ()3 其中()2R C f ∈,且()y x f ,关于y 满足Lipschitz 条件,即存在0>L 使()()'',,y y L y x f y x f -≤-,R y y x ∈',, ()4则初值问题()3在R 上存在唯一解.证明 微分方程(3)等价于积分方程 ()()()dt t y t f y x y xx ⎰+=0,0,取0>δ,使.1<δL 在[]δ+00,x x C 上定义映射()()()(),,00dt t y t f y x T xx ⎰+=φ则由(4)式得ϕφT T -=()()()()0max ,,xx x x x f t t f t t dt δϕφ≤≤+⎡⎤-⎣⎦⎰ ()()000maxxx x x x L t t dt δϕφ≤≤+≤-⎰,ϕφδ-≤L []δϕφ+∈00,,x x C ,已知1<δL ,故由定理1.2.1知存在唯一的连续函数[],,000δφ+∈x x C 使,00φφT =即()()()dt t t f y x xx ⎰+=0000,φφ,且()x 0φ在[]δ+00,x x 上连续可微,且()x y 0φ=就是微分方程()2在[]δ+00,x x 上的唯一解.1.3.2在数列求极限中的应用由定理1.2.1的证明可知,若f 是[]b a ,上的压缩映射,则对[]b a x ,1∈∀,由递推公式()n n x f x =+1确定的数列{}n x 收敛,且n n x x ∞→=lim 0为f 的唯一不动点.例 1.3.2.1[5]证明:若()x f 在区间[]r a r a I +-=,上可微,()1<≤'a x f 且()()r a a a f -≤-1,任取I x ∈0.令()()()n n x f x x f x x f x ===+11201,,, ,则**lim ,n n x x x →∞=为方程()x f x = 的根(即*x 为()x f 的不动点).证明 已知I x ∈0,设I x n ∈则()()(){}()a a f a x f a a f a f x f a x n n n -+-≤-+-=-+ξ'1(),(a x n ∈ξ)由已知得 ()r r a ar a x n =-+≤-+11即I x n ∈+1,从而得知,一切I x n ∈.由微分中值定理,存在ξ在n x 与1+n x 之间,即I ∈ξ使得()()()()10,11'11<<-≤-≤-=----+a x x a x x f x f x f x x n n n n n n n n ξ.这表明()n n x f x =+1是压缩映射,所以{}n x 收敛.又因()x f 连续.在()n n x f x =+1里取极限知{}n x 的极限为()x f x = 的根.例 1.3.2.2[9]设[];3,2,22,1,0,2121 =-=∈=-n x a x a a x n n 求证数列{}n x 收敛并求其极限.证明 易知20ax n ≤≤.则我们在区间⎥⎦⎤⎢⎣⎡2,0a 上考虑函数()222x a x f -=,对⎥⎦⎤⎢⎣⎡∈∀2,0,21a x x 有()()21212122122122122x x a x x x x x x x f x f -≤+-=-=- []()1,0∈a .即()x f 是⎥⎦⎤⎢⎣⎡2,0a 上的压缩映射.从而{}n x 收敛于方程的解.设22020x a x -=得110-+=a x .1.3.3在数学建模中的应用不动点定理也是连续函数的一个重要性质,在数学分析中我们就知道这样一个结论“闭区间上的连续函数必然存在不动点”.在一些数学建模题目的解答上应用不动点定理会使得求解更简单,下面就介绍几个不动点定理在数学分析中的形式及其在解决数学建模问题中的应用,进而深化对不动点定理的认识以及说明此定理应用的广泛性.引理 1.3.3.1[6-7]设()x f 在[]b a ,上连续,且()()b f a f ,异号,则()x f 在[]b a ,内至少存在一点c 使得()0=c f .定理 1.3.3.2[6-7]设()x f 是定义在[]b a ,上的连续函数,其满足()b x f a ≤≤,则在[]b a ,上至少存在一个不动点0x ,即()00x x f =.例 1.3.3.1 日常生活中常有这样一个经验:把椅子往不平的地面上放,通常只有三个脚着地,放不稳,然而只需稍挪动几次,就可以是四只脚同时着地,放稳了.我们将这个问题转化为纯数学问题.现在应用不动点定理对其进行解释说明.模型假设: 对椅子和地面做一些假设:1)椅子四条腿一样长,倚脚与地面可视为一点,四脚的连线呈正方形. 2)地面高度是连续变化的,沿任何地方都不会出现间断点(没有像台阶那样的情况).即地面可视为数学上的连续曲面.3)对于椅脚的间距和倚腿的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地.4)椅子转动时中心不动.模型分析:在图1中椅脚连线为正方形ABCD ,对角线AC 与x 轴重合,椅子绕中心点O 旋转角度θ后,正方形ABCD转至D C B A ''''的位置,所以对角线AC 与x 轴夹角θ表示了椅子的位置.其次要把椅脚着地用数学符号表示出来.如果用某个变量表示椅脚与地面的竖直距离,那么当这个距离为零时就是椅脚着地了,椅子在不同位置是椅脚与地面的距离不同,所以这个距离是椅子位置变量θ的函数.设()θf 为C A ,两脚与地面距离之和,()θg 为D B ,两脚与地面距离之和.由假x设2)知,()θf 和()θg 都是连续的函数.由假设3),椅子在任何位置至少有三只脚同时着地,所以对于任意的θ,()θf 和()θg 中至少有一个为零.即()θf ()θg =0,当0=θ时不妨设()()0,0>=θθf g .从而数学问题就转化为求证存在0θ,使()()000==θθg f ,⎪⎭⎫ ⎝⎛<<20πθ.模型求解:令()()().θθθg f h -=因()()()0222,0000<⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛>-=πππg f h g f h .则由定理1.3.3.2知,必存在,2,00⎪⎭⎫⎝⎛∈πθ使(),00=θh 即()()000==θθg f .1.3.4在解线性方程组中的应用例1.3.4.1[1]设有线性方程组b Cx x +=其中()ij c C =是n n ⨯方阵,()Tn b b b b ,,,21 =是未知向量,证明:若矩阵C 满足1sup 1,1,2,,nij ij c i n =<=∑,则方程b Cx x +=有唯一解.证明 设X 是n R (或n C ),定义度量()i i ni y x y x -=≤≤1max,ρ,则X 是完备的度量空间.作映射.,,:X x b Cx Tx X X T ∈+=→若()(),,,,,,,,2121X y y y y X x x x x Tn Tn ∈=∈=则 ()⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=∑∑=≤≤i j ij n j i j ij ni b y c b x c Ty Tx 11max ,ρ()()y x a y x c y x c nj ij ni j j n j ij ni ,,max max 1111ρρ=≤-≤∑∑=≤≤=≤≤而,1max 11<=∑=≤≤nj ij ni c a 所以T 是X 上的压缩映射,定理1.2.1知,存在唯一的n R x ∈*,使得b Cx x +=**.2 Leray —Schauder 不动点定理 2.1 相关概念定义2.1.1[3]称映射:f U Y →在0x U ∈处连续,是指对任给0ε>,存在0δ>,当x U ∈且0x x δ-<时,恒有0()()f x f x ε-<.若f 在U 内每一点连续,则称f 在U 上连续.定义 2.1.2[4]设,X Y 为线性赋范空间,D X ⊂,称映射:F D Y →为紧映射,如果F 将D 中的任何有界集S 映成Y 中的相对紧集()F S ,即()F S 是Y 的紧集.如果映射F 是连续的,则称F 为紧连续映射,或全连续映射.定义 2.1.3[3]设M 是U 的一个子集,如果对任意的M y y ∈21,以及满足10≤≤α的任意实数α,元素21)1(y y αα-+仍属于M ,则称M 是U 的凸集.如果M既是闭集且凸集,则称M 是U 中的闭凸集.2.2 Leray —Schauder 不动点定理及应用定理2.2.1(Brouwer 不动点定理)设Ω是n R 中的有界闭凸子集,Ω∂表示Ω的相对边界;设),(n R C f Ω∈并且满足Ω⊂Ω∂)(f .则在Ω上必有不动点.例2.2.1 设B 是实2l 空间的闭单位球,令B B f →:为(),,,,1212⎪⎭⎫ ⎝⎛-= ξξx x f ().B x k ∈=ξ则f 在B 上连续,但f 在B 上却没有不动点(否则,存在B x ∈,使()x x f =.由此推得,,,11221 ξξξ=-=x 再由2l x ∈得0=x ,这又导致()()x x f ≠= ,0,0,1,得到矛盾).在应用中,常常涉及到无穷维空间(如[][]b a L b a C ,,,2)上的算子,由上例可知,Brouwer 不动点定理对无穷维空间不再成立,尽管如此,我们注意到有线维空间的有界闭集即紧集,若将Brouwer 不动点定理中的“有界闭凸集”改为“紧凸集”,则可利用Leray —Schauder 度理论,就可以说明下述结论.定理2.2.2(Schauder 不动点定理) 设D 是实Banach 空间E 中的非空紧凸集,D D A →:连续,则A 在D 上必有不动点.定理2.2.3(Leray —Schauder 不动点定理)设D 是实Banach 空间E 中的非空有界闭凸集,若算子D D A →:全连续,则A 在D 上必有不动点.例2.2.1考察Urysohn 积分方程()()(),,x t k t s x s ds Ω=⎰ ()5解的存在性,其中Ω是n R 中的有界闭集,()u s t k ,,在R ⨯Ω⨯Ω上连续,并满足()R u s t u u s t k ∈Ω∈+≤,,,,,βα ()6 这里().1,0,0<Ω>>m ββα证明方程()5在Ω上必有连续解.证明 令)()(:Ω→ΩC C A 为()()()(),,Ax t k t s x s ds Ω=⎰,则可知A 是全连续算子.令{},|)(,)(1)(γβαγ≤Ω∈=Ω-Ω=x C x D m m 则D 是)(ΩC 中的有界闭凸集,且当D x ∈是,由()6得()()()ds s sx t k t Ax ⎰Ω≤,()()ds s x ⎰Ω+≤βα Ω+Ω≤m x m βαγβγα=Ω+Ω≤m m 故,γ≤Ax 此即D Ax ∈.由定理 2.2.3知,A 在D 上必有不动点,即存在D x ∈使()()(),,,x t k t s x s ds Ω=⎰因此x 是方程()5在Ω上的连续解. 3 总结不动点定理及其变换形式在线性分析和非线性分析中以及其他领域有着广泛的应用.本文只是总结了在线性分析和非线性分析中最基本的应用,随着不动点定理的不断发展和完善,将会有更多更广泛的应用.参考文献[1]吴翊,屈田兴.应用泛函分析[M].长沙:国防科技大学出版社,2002.[2]程其蘘,张奠宙等.实变函数与泛函分析基础[M].北京:高等教育出版社,2003.[3]王声望,郑维行等. 实变函数与泛函分析[M].北京:高等教育出版社,2003.[4]钟承奎,范先令等.非线性泛函分析引论[M].兰州:兰州大学出版社,2004.[5]钱吉林.数学分析题解精粹[M].北京:中央民族大学出版社,2002.[6]华东师范大学数学系.数学分析(上册)[M].北京:高等教育出版社,2001.[7]华东师范大学数学系.数学分析(下册)[M].北京:高等教育出版社,2001.[8]裴礼文.数学分析中的典型问题与方法[M].北京:高等教育出版社,2006.[9]张卿.压缩映象原理的证明及应用[J].衡水学院学报,2008.。