§2连续函数的性质Ⅰ. 教学目的与要求1.理解连续函数的局部有界性、局部保号性、保不等式性.2.掌握连续函数的四则运算法则、连续函数的复合函数及反函数的连续性,会利用其讨论函数的连续性.3.掌握闭区间上连续函数的性质,会利用其讨论相关命题.4.理解函数一致连续性的概念.Ⅱ. 教学重点与难点:重点: 闭区间上连续函数的性质.难点:. 闭区间上连续函数的性质,函数一致连续性的概念.Ⅲ. 讲授内容一 连续函数的局部性质若函数f 在点0x 连续,则f 在点0x 有极限,且极限值等于函数值()0x f .从而,根据函数极限的性质能推断出函数f 在()0x U 的性态.定理4.2(局部有界性) 若函数f 在点0x 连续,则f 在某()0x U 内有界.定理4.3(局部保号性) 若函数f 在点0x 连续,且()0x f 0> (或0<),则对任何正数()0x f r < (或()0x f r -<),存在某()0x U ,使得对一切∈x ()0x U 有 ()r x f >,()r x f -<或().注 在具体应用局部保号性时,常取()021x f r =则(当()0x f 0>时)存在某()0x U 使在其内有()>x f ()021x f . 定理4.4(四则运算) 若函数f 和g 在点0x 连续,则g f g f g f ,,⋅±(这里()00≠x g )也都在点0x 连续.以上三个定理的证明,都可从函数极限的有关定理直接推得.对常量函数c y =和函数x y =反复应用定理4.4,能推出多项式函数()n n n n a x a x a x a x P +++=--1110 和有理函数()()()x Q x P x R =(Q P ,为多项式)在其定义域的每一点都是连续的.同样,由x sin 和x cos 在R 上的连续性,可推出x tan 与x cot 在其定义域的每一点都连续.关于复合函数的连续性,有如下定理:定理4.5 若函数f 在点0x 连续,g 在点0u 连续,()00x f u =,则复合函数f g 在点0x 连续.证 由于g 在0u 连续,对任给的0>ε,存在01>δ,使得当10δ<-u u 时有()()ε<-0u g u g . ()1又由()00x f u =及()x f u =在点0x 连续,故对上述01>δ,存在0>δ,使得当δ<-0x x 时有()()100δ<-=-x f x f u u .联系(1)得:对任给的0>ε,存在0>δ,当δ<-0x x 时,有()()()()ε<-0x f g x f g . 所以 f g 在点0x 连续.注 根据连续性的定义,上述定理的结论可表为()()()()0))(lim (lim 00x f g x f g x f g x x x x ==→→. ()2 例1 求()211sin lim x x -→.解 ()21sin x -可看作函数()u u g sin =与()21xx f -=的复合.由(2)式得 ()()()00sin 1lim sin 1sin lim 2121==-=-→→x x x x . 注 若复合函数f g 的内函数f 当0x x →时极限为a ,而()0x f a ≠或f 在0x 无定义(即0x 为f 的可去间断点),又外函数g 在a u =连续,则我们仍可用上述定理来求复合函数的极限,即有 ))(lim ())((lim 00x f g x f g x x x x →→= ()3 还可证明:()3式不仅对于0x x →这种类型的极限成立,而且对于→x ∞+,-∞→x 或±→0x x 等类型的极限也是成立的.例2 求极限: ()x x x sin 2lim 10-→;()xx x sin 2lim 2-∞→. 解 ()112s i n lim 2sin 2lim 100=-=-=-→→xx x x x x ; ()202s i n lim 2sin 2lim 2=-=-=-∞→∞→xx x x x x . 二 闭区间上连续函数的基本性质设f 为闭区间[]b a ,上的连续函数,本段中我们讨论f 在[]b a ,上的整体性质.定义1 设f 为定义在数集D 上的函数.若存在D x ∈0,使得对一切D x ∈有()()()()()x f x f x f x f ≤≥00,则称f 在D 上有最大(最小)值,并称()0x f 为f 在D 上的最大(最小)值.例如,x sin 在[]π,0上有最大值1,最小值0.但一般而言,函数f 在其定义域D 上不一定有最大值或最小值(即使f 在D 上有界).如()x x f =在()1,0上既无最大值也无最小值.又如()()⎪⎩⎪⎨⎧=∈=,与,10,21,0,1x x x x g ()4它在闭区间[]1,0上也无最大、最小值.下述定理给出了函数能取得最大、最小值的充分条件.定理4.6 (最大、最小值定理) 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有最大值与最小值.推论 (有界性定理) 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有界.由()4式给出的函数g 在闭区间[]1,0上无界,什么对函数g 上述推论的结论不成立. 定理4.7 (介值性定理) 设函数f 在闭区间[]b a ,上连续,且()≠a f ()b f .若μ为介于()a f 与()b f 之间的任何实数()()b f a f <<μ(或()μ>a f ()b f >),则至少存在一点()b a x ,0∈,使得().0μ=x f这个定理表明,若f 在[]b a ,上连续,又不妨设()()b f a f <,则f 在[]b a ,上必能取得区间()()[]b f a f ,中的一切值,即有()()[][]()b a f b f a f ,,⊂,其几何意义如图4—2所示. 推论(根的存在定理) 若函数f 在闭区间[]b a ,上连续,且()a f 与()b f 异号(即()()0<b f a f ),则至少存在一点()b a x ,0∈,使得()00=x f ,即方程()0=x f 在()b a ,内至少有一个根.这个推论的几何解释如图4—3所示:若点()()a f a A ,与()()b f b B ,分别在x 轴的两侧,则连接A 、B 的连续曲线()x f y =与x 轴至少有一个交点.应用介值性定理,我们还容易推得连续函数的下述性质:若f 在区间I 上连续且不是常量函数,则值域()I f 也是一个区间;特别,若I 为闭区间[]b a ,,f 在[]b a ,上的最大值为M ,最小值为m ,则[]()[]M m b a f ,,=;又若f 为,[a ]b 上的增(减)连续函数且不为常数,则[]()()()[]()()[]()b f a f b f a f b a f ,,,=.下面举例说明介值性定理的应用.例3 证明:若0>r ,n 为正整数,则存在唯一正数0x ,使得00(x r x n =称为r 的n 次正根(即算术根),记作n r x =0).证 先证存在性.由于当+∞→x 时有+∞→n x ,故必存在正数a ,使得n a r >.因()n x x f =在[]a ,0上连续,并有()()a f r f <<0,故由介值性定理,至少存在一点()a x ,00∈,使得()r x x f n ==00. 再证唯一性.设正数1x 使得r x n =1,则有()()011120101010=+++-=----n n n n n x x x x x x x x , 由于第二个括号内的数为正,所以只能010=-x x ,即01x x =.例4 设f 在[]b a ,上连续,满足[]()[]b a b a f ,,⊂. ()5证明:存在[]b a x ,0∈,使得()00x x f =. ()6证 条件()5意味着:对任何[]b a x ,∈有()b x f a ≤≤,特别有()a f a ≤ 以及 ()b b f ≥.若()a f a =或()b b f =,则取a x =0或b ,从而()6式成立.现设()a f a <与()b b f <.令()()x x f x F -=,则()(),0>-=a a f a F ,()()0<-=b b f b F .故由根的存在性定理,存在∈0x ()b a ,,使得()00=x F ,即().00x x f =从本例的证明过程可见,在应用介值性定理或根的存在性定理证明某些问题时,选取合适的辅助函数(如在本例中令()()x x f x F -=),可收到事半功倍的效果.三 反函数的连续性定理4.8 若函数f 在[]b a ,上严格单调并连续,则反函数1-f 在其定义域()()[]b f a f ,或()()[]a f b f ,上连续.证 不妨设f 在[]b a ,上严格增.此时f 的值域即反函数1-f 的定义域为()a f [,()]b f .任取()()()b f a f y ,0∈,设=0x ()01y f -,则()b a x ,0∈.于是对任给的>ε0,可在()b a ,内0x 的两侧各取异于0x 的点()20121,x x x x x <<,使它们与0x 的距离小于ε(图4—4).设与21,x x 对应的函数值分别为1y ,2y ,由f 的严格增性知201y y y <<令()1002,m in y y y y --=δ,则当()δ;0y U y ∈时,对应的()y f x 1-=的值都落在1x 与2x 之间,故有()()ε<-=---0011x x y f y f ,所以1-f在点0y 连续,从而1-f 在()()()b f a f ,内连续. 类似地可证1-f 在其定义区间的端点()a f 与()b f 分别为右连续与左连续.所以1-f 在()()[]b f a f ,上连续.- 例5 由于x y sin =在区间⎥⎦⎤⎢⎣⎡-2,2ππ上严格单调且连续,故其反函数=y x arcsin 在区间[]1,1上连续.同理可得其它反三角函数也在相应的定义区间上连续.如x y arccos =在[]1,1-上连续,x y arctan =在()+∞∞-,上连续等.例6 由于n x y =(n 为正整数)在),0[+∞上严格单调且连续,故n x y 1=在),0[+∞上连续.又若把n xy 1-=(n 为正整数)看作由n u y 1=与x u 1=复合而成的函数,则由复合函数的连续性,n x y 1-=在()+∞,0上连续.综上可知,若g 为非零整数,则q x y 1=是其定义区间上的连续函数.例7 证明:有理幂函数αx y =在其定义区间上连续. 证 设有理数qp =α,这里()0,≠q p 为整数.因为q u y 1=与p x u =均在其定义区间上连续,所以复合函数 ()αx xy q p ==1也是其定义区间上的连续函数.四 一致连续性 函数f 在区间上连续,是指f 在该区间上每一点都连续.本段中讨论的一致连续性概念反映了函数在区间上更强的连续性.定义2 设f 为定义在区间I 上的函数.若对任给的0>ε,存在()>=εδδ0,使得对任何x 'I x ∈'',只要:δ<''-'x x ,就有()()ε<''-'x f x f ,则称函数f 在区间I 上一致连续.直观地说,f 在I 上一致连续意味着:不论两点x '与x ''在I 中处于什么位置,只要它们的距离小于δ,就可使()()ε<''-'x f x f .例8 证明()()0≠+=a b ax x f 在()+∞∞-,上一致连续.证 任给0>ε,由于()()x x a x f x f ''-'=''-',故可选取a εδ=,则对任何(),,,+∞∞-∈'''x x 只要δ<''-'x x ,就有()()ε<''-'x f x f .所以 ()b ax x f +=在()+∞∞-,上一致连续.例9 证明函数xy 1=在()1,0内不一致连续(尽管它在()1,0内每一点都连续).§4.2连续函数的性质证 按一致连续性的定义,为证函数f 在某区间I 上不一致连续,只须证明:存在某00>ε,对任何正数δ(不论δ多么小),总存在两点I x x ∈''',,尽管δ<''-'x x ,但有()()0ε≥''-'x f x f .对于函数x y 1=,可取10=ε,对无论多么小的正数⎪⎭⎫ ⎝⎛<21δ,只要取δ='x 与2δ=''x (图4-5),则虽有 δδ<=''-'2x x ,但1111>=''-'δx x , 所以xy 1=在()1,0内不一致连续. 函数在区间上连续与一致连续这两个概念有着重要的差别.f 在区间I 上连续,是指任给0>ε,对每一点I x ∈,都存在相应的正数()x ,εδδ=,只要I x ∈'且δ<'-x x ,就有()()ε<'-x f x f .一般来说,对于I 上不同的点,相应的正数δ是不同的.换句话说,δ的取值除依赖于ε之外,还与点x 有关,由此我们写()x ,εδδ=以表示δ与ε和x 的依赖关系.如果能做到δ只与ε有关,而与x 无关,或者说存在适合于I 上所有点x 的公共的δ,即()εδδ=,那么函数就不仅在I 上连续,而且是一致连续了.所以,f 在区间I 上一致连续是f 的又一个整体性质,由它可推出f 在I 上每一点都连续的这一局部性质(只要在定义2中把x '看作定点,把x ''看作动点,即得f 在点x '连续).而从例9可见,由f 在区间I 上每一点都连续,并不能推出f 在I 上一致连续.然而,对于定义在闭区间上的函数来说,由它在每一点都连续却可推出在区间上的一致连续性,即有如下重要定理:定理4.9 (一致连续性定理) 若函数f 在闭区间[]b a ,上连续,则f 在,[a b ]上一致连续.例10 设区间1I 的右端点为1I c ∈,区间2I 的左端点也为212,(I I I c ∈可分别为有限或无限区间).试按一致连续性的定义证明:若f 分别在1I 和2I 上一致连续,则f 在21I I I =上也一致连续.x'§4.2连续函数的性质证 任给0>ε,由f 在1I 和2I 上的一致连续性,分别存在正数1δ和2δ,使得对任何,,2I x x ∈''',只要1δ<''-'x x ,就有()()ε<''-'x f x f ; ()7又对任何2,I x x ∈''',只要2δ<''-'x x ,也有(7)式成立.点c x =作为1I 的右端点,f 在点c 为左连续,作为2I 的左端点,f 在点c 为右连续,所以f 在点c 连续.故对上述0>ε,存在03>δ,当3δ<-c x 时有()()2ε<-c f x f . ()8令()321,,min δδδδ=,对任何I x x ∈''',,δ<''-'x x ,分别讨论以下两种情形:(i)x x ''',同时属于1I 或 2I ,则()7式成立;(ii )x x ''',分属1I 与2I ,设21,I x I x ∈''∈'则3δδ≤<'-''<'-=-'x x x c c x ,故由()8式得()()2ε<-'c f x f .同理得()()2ε<-''c f x f 从而也有()7式成立.这就证明了f 在I 上一致连续.Ⅳ 小结与提问:本节要求理解函数一致连续性的概念,掌握续函数的局部性质、闭区间上连续函数的性质,并利用其讨论相关命题. 掌握连续函数的四则运算法则、连续函数的复合函数及反函数的连续.Ⅴ 课外作业: 80P 2、3、4、6、7、8、9、10、12、14、18、19、20.。