当前位置:文档之家› 推荐-6MW机组燃烧控制系统设计 精品

推荐-6MW机组燃烧控制系统设计 精品

沈阳工程学院课程设计设计题目: 600MW机组燃烧控制系统设计院系自动化学院班级学生姓名学号指导教师职称起止日期:年月日起——至年月日止沈阳工程学院课程设计任务书课程设计题目:600MW机组燃烧控制系统设计学院自动化学院班级学生姓名学号指导教师职称课程设计进行地点:教学楼F座619室任务下达时间:年月日起止日期年月日起——至年月日止自动化系主任年月日批准沈阳工程学院热工过程控制系统课程设计成绩评定表学院:自动化学院班级:学生姓名:中文摘要目前,我国的电厂大多数是火力发电厂,煤是发电的主要燃料,锅炉燃烧是发电的重要环节之一。

我们要以最经济的方式来利用有限的能源,这就要求我们寻找燃烧的最优方案。

本文在对国内外锅炉控制现状、发展趋势分析的基础上,研究了燃煤锅炉燃烧系统的自动控制问题。

分析了燃烧控制系统的热工控制结构特点,为更大范围符合锅炉燃烧的要求,提高燃烧自动的控制系统的利用率,是在按照传统燃烧自动控制结构设计的基础上优化实现的。

燃烧控制系统是一个复杂的综合性控制系统,从控制理论上讲,它可为是多输入/多输出的多变量控制系统。

它由六个子系统构成:燃料控制系统、磨煤机一次风量控制系统、磨煤机出口温度控制系统、一次风压力控制系统、二次风量控制系统和炉膛压力控制系统。

关键词燃烧量,燃料主控,风煤交叉目录1 绪论1.1单元机组的基本控制方式随着电力工业的发展,高参数大容量的火力发电机组在电网中所占比例越来越大因此要求大型机组具有带变动负荷运行的能力,以便迅速满足负荷变化的需要及参加电网调频。

因此通常采用锅炉汽轮发电机组的单元制运行方式,按锅炉、汽轮机在控制过程中的任务和相互关系的不同,可以构成三种基本控制方式,即机跟炉和炉跟机、机炉协调等控制方式。

1.1.1炉跟机控制方式图1.1炉跟机控制方式这种控制方式的特点:调压,机调功,负荷响应快,可以利用锅炉蓄能,压力波动大。

这种控制方式的的优点是充分利用了锅炉的蓄热来迅速适应负荷的变化,对机组调峰调频有利。

缺点是主汽压力变化较大,甚至超出允许范围,将对机组的安全经济运行不利。

1.1.2机跟炉控制方式图1.2机跟炉控制方式这种控制方式的特点:机调压,炉调功,压力波动小,负荷响应慢,不能利用锅炉蓄能。

这种控制方式的优点是在运行中主蒸汽压力相当稳定(气压变化很小),有利于机组的安全经济运行。

缺点是由于没有利用锅炉的蓄热,而只有当锅炉改变燃烧率造成蒸发量改变后,才能改变机组的出力,这样适应负荷变化能力较差,不利于机组带变动负荷和参加电网调频。

这种控制方式适用于承担基本负荷的单元机组或当机组刚刚投入运行经验还不够时,采用这种系统可使气压稳定而为机组稳定运行创造条件。

当单元机组中汽轮机设备及其辅机运行正常,而机组的输出功率受到锅炉设备及其辅机的原因限制时,也可以采用这种汽轮机跟随锅炉的控制方式。

1.2燃烧过程自动控制的任务1.维持汽压。

汽压的设定值是根据生产要求设定的;负荷量是由生产需要随时调整;锅炉的蒸汽流量是由蒸汽压力和负荷的阀门开度共同决定的。

汽压的变化表明蒸汽流出量与负荷需求量不相符,需改变给煤量以维持汽压恒定,使蒸汽流量满足负荷要求。

2.保证燃烧的经济性。

改变给煤量时,必须相应地改变送风量,使之与燃料量相配合,保证燃烧过程的经济性。

送入空气量不足,则燃料不能充分燃烧;送入空气量过大,则过剩空气带走炉膛的热量,造成热损失。

3.保证引风和鼓风的正确配比,维持炉膛负压值。

膛压为正,会使炉膛有爆炸危险,并且使炉火外喷,对锅炉周围设备及操作人员造成威胁;负压过大,则过剩空气会带走炉膛中的热量。

1.2.1锅炉调气压与汽轮机调气压(1)维持机前压力PT(过热器出口汽压)机前压力应保持在给定值±0.2Mpa范围。

(2)维持单元机组的负荷。

(3)维持炉内过剩空气稳定,以保证燃烧经济性,控制系统应能保持炉内氧量在给定值±0.5%范围内。

(4)维持炉膛负压要求控制系统应能保持炉膛压力在给定值±30pa范围内1.2.2维持炉膛内压力的稳定正常运行时锅炉压力反映了送风量与引风量的平衡关系,炉膛压力的变化表图1.3燃烧控制系统的组合方式明引风量、送风量二者之间出现失衡,故当送风量变化时,必须相应地调整引风量的大小。

另外炉膛压力大小还与炉内燃烧的稳定性密切相关,直接影响机组的安全经济运行。

从上述可知,一台锅炉的三项基本调节任务是彼此相关,不可全然分开的,但三者间又有相对的独立性,可以用三个子系统来完成各自的调节任务,如图所示。

燃料调节系统的调节变量时燃料量B,相对应的被调量是锅炉出口汽压或机前压力PT;送风调节系统的调节变量时送风量V,相对应的被调量为炉内过量空气系数a;引风调节系统的调节变量为引风量VS,相对应的被调量为炉膛压力PS。

图中虽没有表示出三个子系统之间的联系,但实际的燃烧控制系统中三个子系统的协调配合是相当重要的锅炉燃烧过程自动控制的任务在于使锅炉的燃烧工况与锅炉的蒸汽负荷要求相适应,同时保证锅炉燃烧过程安全经济地运行。

因此,当锅炉的负荷改变时,需要进行燃烧的调整。

每台锅炉燃烧过程的具体控制任务及控制策略因燃烧种类、制粉系统、燃烧设备以及锅炉的运行方式不同而异。

1.3燃烧过程自动控制内容与特点1.3.1 燃料量控制燃料量控制就使进入锅炉的燃料燃烧所产生的蒸汽量满足的外部负荷要求信号。

燃料量控制是锅炉控制中最基本也是最主要的一个系统。

因为给煤量的多少既影响主汽压力,也影响送、引风量的控制,还影响到汽包中蒸汽蒸发量及汽温等参数,所以燃料量控制的好坏对锅炉运行有重大影响。

当单元机组采取机跟炉负荷控制方式时,锅炉调机组负荷,汽机调汽压,直接将电网的符合要求N0作为锅炉的负荷要求信号;当单元机组采取炉跟机负荷控制方式时,汽机调机组负荷,锅炉调汽压,由于锅炉出口汽压是表征锅炉生产的蒸汽量与汽机耗气量之间的平衡指标,所以去锅炉出口汽压作为锅炉的负荷要求信号;当单元机组采用机炉协调负荷方式,负荷控制系统(主控系统)的锅炉主控信号作为锅炉的负荷要求信号。

1.3.2燃烧控制系统的特点燃烧过程的控制对象之间存在着相互影响,每个被控量都同时受到几个控制量的影响,每个控制量又能同时影响几个被控量。

严格讲,燃烧过程控制对象为多输入多输出的多变量对象,对多变量对象应采取多变量控制理论设计方法来设计控制系统。

但目前电厂广泛使用单变量控制理论来设计控制系统,这是由于用单变量控制方法加上一些改进措施(如前馈信号等)已满足电厂设计生产过程的要求。

2燃烧控制对象的动态特性2.1 概述锅炉的燃烧过程是一个能量转换,传递的过程,也就是利用燃料燃烧的热量产生汽轮机所需蒸汽的过程。

主蒸汽是平衡蒸汽量与外界负荷两者是否相适应的一个标志。

因此,要了解燃烧过程的动态特性主要是弄清汽压对象的动态特性。

2.2汽压控制对象的动态特性锅炉燃烧过程自动控制的基本任务是既要提供热量适应蒸汽负荷的需要,又要保证燃烧的经济性和锅炉运行的安全性。

为了达到上述目的,燃烧过程的控制系统应包括三个调节任务:即维持汽压、保证最佳空燃比和保证炉膛负压不变。

与此相对应,应有三个控制回路分别调节燃料量、送风量和引风量,从而构成了多参数的燃烧过程控制系统。

为了能正确地设计控制系统,应先了解对象的动态特性。

2.2.1汽压调节对象的特性锅炉的燃烧过程是一个能量转换、传递的过程,也就是利用燃料燃烧的热量产生用汽设备所需蒸汽的过程。

主汽压力是衡量蒸汽量与外界负荷两者是否相适应的一个标志。

因此,要了解燃烧过程的动态特性主要是弄清汽压对象的动态特性。

2.2.2汽压被控对象的生产流程及环节划分锅炉汽包压力是燃烧过程控制的主要被控量,分析燃烧过程对象的动态特性,是确定燃烧系统自动控制方案的主要依据。

汽压被控对象的生产流程示意图如图2.1所示,整个系统由炉膛1,汽包、水冷壁组成的蒸发受热面2,过热器3,母管4和用汽设备5组成。

工质(水)通过炉膛吸收了燃料燃烧发出的热量,不断升温,直到产生饱和蒸汽汇集于汽包内,最后经过过热器成为过热蒸汽,输送到用汽设备作功。

2.3燃烧系统的调节对象燃烧调节系统一般有3个被调参数,气压p、过剩空气系数α(或最佳含氧量O2)和炉膛负压Pf;有3个调节量,它们是燃料量M、送风量F和引风量Y。

燃烧调节系统的调节对象对于燃料量,根据燃料种类的不同可能是炉排电机,也可能是燃料阀。

对于送风量和引风量一般是鼓风电机和引风电机。

图2.1汽压对象生产流程示意图1-炉膛;2-蒸发受热面;3-汽包;4-过热器;5-汽轮机汽压对象生产流程如图12-5所示,主蒸汽压力PT 受到的主要扰动来源有两个,其一是燃烧率扰动称为基本扰动或内部扰动;其二是汽轮机调节阀门开度的扰动,称为外部扰动。

图示系统由炉膛,蒸发受热面(水冷壁),汽包,过热器和汽轮机等组成。

工质(水)通过炉膛吸收了燃料燃烧发出的热量,不断升温,直接产生宝盒真去汇集于汽包内,最后通过过热器成为过热蒸汽,输送到汽轮机做功。

环节1:其输入量为单位时间内炉膛燃烧的燃料量M (kg/s ),输出量为单位时间内传给炉膛受热面的燃料发热量Q r (kJ/s ),又称炉膛热负荷。

在锅炉运行中,当燃料量M 发生变化时,送风量与引风量应同时协调变化,这时的燃料量M 的变化,表示锅炉燃烧率的变化,Q r 的变化与燃烧率的变化(相当于M 的变化)成正比。

燃料从煤斗下来落在炉排上,形成均匀的、有一定厚度的燃料层进行燃烧。

所谓“火床”即是形象地表达了这种燃烧方式的特点。

根据给煤量阶跃扰动响应曲线求得床温被控对象的近似传递函数为: s Q T M e sT K s M s T s W τ-•+==11)()()( (2.1) 燃烧和传热过程是一个复杂的化学物理过程,燃料量改变后,首先需要经过一定的吸热、燃烧、放热时间,而后将热量传给受热面的金属管壁(辐射传热和对流传热同时进行),然后将热量传给锅炉的汽水容积。

根据热力学定律,当物体吸收热量时其温度将升高,并有下列等式成立(式中认为物体质量为单位质量)。

Q=CT (2.2) 式中T ——温度(K );C ——比热(kJ/kg ·K );Q ——热量(kJ )。

由此得到汽压被控对象环节1的近似传递函数为:s M r M e sT K s M s Q s W τ-•+'==111)()()( (2.3) 式中 M K '——M 变化引起Q r 变化的比例系数(kJ/kg );M τ——M 改变至Q r 变化的滞后时间(s );T 1——M 变化引起Q r 变化的惯性时间(s );环节1的方框图如图2.2所示。

图2.2 环节1方框图环节2的动态热平衡方程式可以表示如下:b b s r di W Ddt i i dt Q +-''=)( (2.4)式中 i b ——汽包水焓值(kJ/kg );W b ——汽包蓄水量(kg )。

相关主题