当前位置:文档之家› 脂肪酶的概述及应用

脂肪酶的概述及应用

脂肪酶的概述与应用一脂肪酶概述、脂肪酶(Lipase,甘油酯水解酶)隶属于羧基酯水解酶类,能够逐步的将甘油三酯水解成甘油和脂肪酸。

脂肪酶存在于含有脂肪的动、植物和微生物(如霉菌、细菌等)组织中。

包括磷酸酯酶、固醇酶和羧酸酯酶。

脂肪酸广泛的应用于食品、药品、皮革、日用化工等方面脂肪酶广泛的存在于动植物和微生物中。

植物中含脂肪酶较多的是油料作物的种子,如蓖麻籽、油菜籽,当油料种子发芽时,脂肪酶能与其他的酶协同发挥作用催化分解油脂类物质生成糖类,提供种子生根发芽所必需的养料和能量;动物体内含脂肪酶较多的是高等动物的胰脏和脂肪组织,在肠液中含有少量的脂肪酶,用于补充胰脂肪酶对脂肪消化的不足,在肉食动物的胃液中含有少量的丁酸甘油酯酶。

脂肪酶是一类具有多种催化能力的酶,可以催化三酰甘油酯及其他一些水不溶性酯类的水解、醇解、酯化、转酯化及酯类的逆向合成反应,除此之外还表现出其他一些酶的活性,如磷脂酶、溶血磷脂酶、胆固醇酯酶、酰肽水解酶活性等(Hara;Schmid)。

脂肪酶不同活性的发挥依赖于反应体系的特点,如在油水界面促进酯水解,而在有机相中可以酶促合成和酯交换。

脂肪酶的性质研究主要包括最适温度与pH、温度与pH稳定性、底物特异性等几个方面。

迄今,已分离、纯化了大量的微生物脂肪酶,并研究了其性质,它们在分子量、最适pH、最适温度、pH和热稳定性、等电点和其他生化性质方面存在不同(Veeraragavan等)。

总体而言,微生物脂肪酶具有比动植物脂肪酶更广的作用pH、作用温度范围,高稳定性和活性,对底物有特异性(Schmid等;Kazlauskas等)。

脂肪酶的催化特性在于:在油水界面上其催化活力最大,早在1958年Sarda和Desnnelv 就发现了这一现象。

溶于水的酶作用于不溶于水的底物,反应是在2个彼此分离的完全不同的相的界面上进行。

这是脂肪酶区别于酯酶的一个特征。

酯酶(E C3.1.1.1)作用的底物是水溶性的,并且其最适底物是由短链脂肪酸(≤C8)形成的酯。

脂肪酶是重要的工业酶制剂品种之一,可以催化解脂、酯交换、酯合成等反应,广泛应用于油脂加工、食品、医药、日化等工业。

不同来源的脂肪酶具有不同的催化特点和催化活力。

其中用于有机相合成的具有转酯化或酯化功能的脂肪酶的规模化生产对于酶催化合成精细化学品和手性化合物有重要意义。

脂肪酶是一种特殊的酯键水解酶,它可作用于甘油三酯的酯键,使甘油三酯降解为甘油二酯、单甘油酯、甘油和脂肪酸。

酶是一种活性蛋白质。

因此,一切对蛋白质活性有影响的因素都影响酶的活性。

酶与底物作用的活性,受温度、pH值、酶液浓度、底物浓度、酶的激活剂或抑制剂等许多因素的影响。

脂肪酶在微生物中有广泛的分布,其产生菌主要是霉菌和细菌。

已经公布的适用于甘油三酯加工的不同来源的脂肪酶有33种,其中18种来自霉菌,7种来自细菌。

脂肪酶可将甘油酯(油、脂)水解,在不同阶段可释放出脂肪酸、甘油二酯、甘油单酯及甘油。

水解生成的脂肪酸,可以用标准的碱溶液滴定,以滴定值表示酶活力。

二脂肪酶的结构解析1、分子结构研究表明, 来源不同的脂肪酶,其氨基酸组成数目从270 ~641 不等, 其分子量为29 000~100 000。

迄今为止,人们已经对多种脂肪酶进行克隆和表达,并利用X-衍射等手段和定向修饰等技术测定了酶的氨基酸组成、晶体结构、等电点等参数, 确定了组成脂肪酶活性中心的三元组(triad)结构。

表1列出了几种常见的脂肪酶的结构特征参数。

正如下表所示, 多数酶都有变种(如CCL(A)和CCL(B)、GCL Ⅰ和GCL Ⅱ等),不过这些不同变种的酶具有绝大多数相同的氨基酸序列, 其氨基酸组成数目完全相同, 不同的只是个别氨基酸的差异。

一般而言, 不仅构成活性中心的三元组氨基酸种类相同, 而且位置不变;其分子量和等电点略有不同。

2、脂肪酶催化中心三元组研究表明,尽管不同来源的脂肪酶有不同的氨基酸组成(残基数目、分子量、三维空间结构等),但由于生物的同源性和进化过程的保守性,其催化中心拥有相似或相同的特征区His-X-Y-Gly-Z-Ser-W-Gly或Y-Gly-His-Ser-W-Gly(W 、X、Y、Z 指非特异性氨基酸)。

如图1所示,绝大多数脂肪酶的活性中心都由Ser 和His 参与组成, His、Ser与另一种氨基酸残基(如CCL 和GCL的Glu、RML 和hPL 的Asp 等)一起构成脂肪酶催化活性中心的三元组(triad)。

如图2 所示3、立体结构具体参数方法:三.脂肪酶的纯化与表达pPIC9k- mRCL 表达质粒的构建1.以华根霉基因组DNA为模板使用PCR方法扩增RCL(华根霉脂肪酶全基因)成熟肽,扩增的基因片段纯化后克隆到载体pMD19-T Vector 中,转化E.coli.DH5α及进行重组质粒的筛选,由此构建重组质粒pMD19-mRCL 。

2.由质粒pMD19-mRCL切下目的基因片段,连入表达载体pPIC9k 构建表达质粒pPIC9k-mRCL 。

(1)质粒双酶切克隆的质粒pMD19-mRCL 和酵母表达质粒pPIC9k 分别被AvrⅡ和Not I 双酶切,得到pMD19-mRCL质粒双酶切的800bb 左右的小片段以及pPIC9k 质粒的双酶切线性质粒大片段,回收目的条带。

(2)连接载体DNA 与目的DNA 片段混合连接。

(3)转化E.coli.DH5α及重组质粒的筛选重组质粒pPIC9K-mRCL的构建重组蛋白在巴斯德毕赤酵母GS115 中的初步表达1. 巴斯德毕赤酵母感受态细胞的制备2. 巴斯德毕赤酵母的电转化对质粒线性化,回收酶切产物;再与巴斯德毕赤酵母感受态细胞混匀,电转化得到含目的基因的重组巴斯德毕赤酵母3. 重组巴斯德毕赤酵母的鉴定可用浓度梯度进行抗性筛选4. 巴斯德毕赤酵母表达脂肪酶甲醇诱导重组蛋白的表达巴斯德毕赤酵母表达系统的优点(选择的原因):1.毕赤酵母是需氧酵母菌,在有氧条件下能高密度生长,因此有利于扩大生产获得高浓度细胞,从而进行高效表达2、通过质粒整合到毕赤酵母基因组的外源基因结构稳定,不易丢失;且外源基因能以高拷贝数整合到毕赤酵母基因组中,能够筛选到高表达菌株3、毕赤酵母甲醇氧化酶(alcohol oxidase,AOX)基因的强启动子特别适用于外源基因的调控表达4、毕赤酵母自身分泌到培养基中蛋白很少,使得分泌性的外源蛋白容易从培养基的基质中分离5、毕赤酵母对外源蛋白产物进行N一乙酰糖基化修饰的结构为高甘露糖型,糖链平均为8~14个甘露糖基,更接近于高等生物,且聚糖末端不含1,3连接的甘露糖残基(有强的免疫原性),因而适用于临床应用6、使用方便、简单,而且成本较低4.表达后的纯化步骤:●对象:重组巴斯德毕赤酵母●过程:1.摇瓶甲醇诱导培养2.脂肪酶的分离纯化(1)10 KD 超滤膜浓缩将mRCL发酵液离心后弃掉沉淀,上清液用微孔滤膜过滤,微滤后的溶液用10 KD 超滤膜浓缩。

浓缩酶液用缓冲液透析过夜。

(2)强阳离子交换柱层析将透析液上样到已用上述缓冲液预平衡的强阳离子交换柱层析(Ф1.6cm×20cm),用相同缓冲洗脱未吸附蛋白。

后用NaCl浓度梯度缓冲液阶段洗脱吸附蛋白,一定的洗脱速率和时间分部收集,集中脂肪酶活性组分,用缓冲液透析。

3)疏水色谱柱层析将透析后的酶液继续用疏水柱层析(Ф1.6 cm×20 cm)层析,用相同缓冲液洗脱除去未吸附蛋白。

然后用硫酸铵浓度梯度差缓冲液阶段洗脱吸附蛋白,最后用H2O 洗脱,一定的洗脱速率和时间分部收集,集中脂肪酶活性组分,透析除盐。

4)得到脂肪酶活性组分mRCL四.脂肪酶的化学修饰设计思路脂肪酶作为一种水解酶,不仅催化水解反应而且催化有机相中酯合成和酯交换反应。

有机相酶催化技术自20 世纪80 年代开创以来,已获得了巨大的发展,广泛应用于食品、医药、化妆品等行业。

近几年来人们为了提高酶在有机相中的溶解性及稳定性,在酶的化学手段修饰和生物学手段修饰方面开展了许多工作[1-6]。

而化学修饰是提高和改变酶催化性能的有效方法。

Basri 等[7]用氨基酯的盐酸盐对脂肪酶进行化学修饰,发现修饰酶在有机溶剂中的溶解度、热稳定性和催化酯化反应活性都有很大提高。

Tatsuo Maruyama 等[8]用硬脂酸修饰了脂肪酶,发现虽然水解活性下降,但酯化活性明显提高。

从文献来看,就化学修饰改善酶催化功能方面而言,以前主要研究了修饰酶在有机相(均相)中的稳定性、催化活性等问题,而涉及非均相界面催化的研究甚少。

表面活性剂是一类兼具亲油基和亲水基的两亲物质,它能富集于界面从而显著地改变界面性质。

修饰原理当水溶性的酶分子中引入长链烷基后,便具有了类似于表面活性剂的两亲结构。

因此与未经修饰的酶相比,修饰后的酶疏水性增强,界面活性提高,从而有利于在有机相或界面催化化学反应,这对于酶的实际应用具有重要意义。

本文从界面化学的角度对用N-羟基琥珀酰亚胺活化的硬脂酸修饰的Lipolase 脂肪酶的界面化学性质进行了研究,重点考察了修饰酶降低表/界面张力的能力及界面催化活性。

1实验材料与方法1.1化学试剂及仪器化学试剂:Lipolase 100L,诺维信(中国)生物技术有限公司生产;N-羟基琥珀酰亚胺,为生化试剂;硬脂酸及其他试剂,为国产分析纯试剂,购自中国医药(集团)上海化学试剂公司。

仪器:冷冻干燥仪(7934001 8917z-01,USA),紫外可见分光光度计(UVIKON,Germany),元素分析仪(Vario EL,Germany),表面张力仪(DCA315,USA),界面张力仪(DVT30,Germany)及LB 成膜装置LB5000(KSV5000,Finland)。

1.2硬脂酸琥珀酰亚胺酯的制备活化后的硬脂酸易于与酶表面的氨基反应,因此先将硬脂酸活化。

将硬脂酸溶入适量N,N-二甲基甲酰胺(DMF)中,并加入一定比例的N-羟基琥珀酰亚胺和二环己基碳酰亚胺。

三者摩尔比为1∶2.25∶2.25[9-10]。

磁力搅拌反应8 h,反应温度为30 ℃。

反应结束后过滤,滤液用乙醚萃取。

蒸去乙醚得到白色固体,然后用无水乙醇反复洗涤后经真空干燥即得。

1.3Lipolase 脂肪酶的化学修饰在磁力搅拌下,将Lipolase 100 L 用透析袋于去离子水中透析2 天,冷冻干燥得到白色固体酶晶体。

固体酶置于5 ℃冰箱中储存备用。

300 mg 固体酶溶于20 mL 磷酸二氢钾–硼砂缓冲液(pH=7.4),将200 mg 硬脂酸琥珀酰亚胺酯溶于5 mL DMF 后逐滴加入酶溶液。

10 ℃下反应10 h。

反应完毕后,混合物在4 000 r/min 下离心15 min 除去未反应的酯,重复操作两次。

相关主题