木材胶粘剂是如何进行粘接的
木材粘接(胶合)过程极其复杂,各种机械、物理、化学的现象交织在一起,到目前为止,还没有一套完整的胶合理念,有的只能解释粘接过程中的部分现象,其中机械胶合理论、吸附胶合理论、扩散胶合理论、静电胶合理论和化学键胶合理论较有代表性。
机械胶合理论认为胶合是因为胶粘剂被涂到材料表面以后,渗透到孔隙内和凹处,固(硬)化后形成胶钉,靠胶钉的作用产生粘接强度,根据这种理论,在胶合过程中产生的胶钉愈多,胶粘剂渗透得愈深,粘接强度也愈大。
但事实上并非如此,例如,栎木和椴木的孔隙比山毛榉和桦木的孔隙多,但是,栎木和椴木的粘接强度却没有山毛榉和桦木的粘接强度高,另外,木材横断面的粘接强度比其他断面(径切面、旋切面)的粘结强度低得多,这些都是机械胶合理论所无法解说的。
机械胶合理论的缺陷之一,就是对液体转为固体时的体积所收缩因素考虑不周。
吸附胶合理论认为一切分子或原子之间都存在着相互作用力,即化学力(化学键)和物理力(范德华力),物理吸附(范德华力)是胶粘剂和被胶粘剂物体之间牢固结合的主要因素。
按照吸附理论的解释,粘接过程分为两个阶段,第一阶段是液体胶粘剂分子借助布朗运动向被粘材料的表面扩散,是两者的分子或基团相互靠近,第二杰顿是产生吸附力,当胶粘剂的表面分子与被粘物体表面分子之间距离小于5×10﹣8cm时,两种分子是产生吸附作用(范德华力),使分子间处于最稳定状态,完成胶合作用。
显然吸附胶合理论比机械胶合理论要完善,但是,仍然有一些现象不能解释。
扩散胶合理论认为胶粘剂和被粘物之间由于热布朗运动而进行相互扩散使胶粘剂和被粘物表面之间的界面消失,形成一个过渡区,过渡区是一个由两种材料的高分子相互交织在一起的网络结构,从而能产生很高的粘接强度。
不过,只有当胶粘剂和被粘物之间的溶解度参数接近时才能互溶,发生相互扩散。
静电胶合理论认为胶粘剂和被粘物的界面区存在着双电层,粘接强度主要是由双电层的静电引力所引起的。
化学键胶合理论认为胶粘剂和被粘物之间由于形成化学键而产生牢固粘接强度。
上述理论各有所长,我们应当加以综合应用,虽然各种理论的侧重点不同,但是从胶合的过程来看应该是一样的,即第一阶段是胶粘剂对被粘物表面的润湿,第二阶段是润湿的胶粘剂在一定条件下使胶粘剂由液态转变成固态,即产生粘接强度,把木材牢固地连接成为一个整体。