当前位置:文档之家› 数据结构实验四 树与二叉树

数据结构实验四 树与二叉树

数据结构实验四树与二叉树
班级学号姓名分数
一、实验目的:
1、掌握二叉树的定义、性质及存储方式,各种遍历算法。

2、掌握这种存储结构的构造算法以及基于每一种结构上的算法设计
3、初步掌握算法分析方法并对已设计出的算法进行分析,给出相应的结果。

二、实验要求:
采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序以及按层次遍历的操作,求所有叶子及结点总数的操作。

三、实验内容及分析:
1、分析、理解程序。

2、调试程序,设计一棵二叉树,输入完全二叉树的先序序列,用#代表虚结点(空指针),
如ABD###CE##F##,建立二叉树,求出先序、中序和后序以及按层次遍历序列,求所有叶子及结点总数。

四、程序的调试及运行结果
先序遍历
中序遍历
后序遍历
树的深度及叶子树
层次遍历
五、程序代码
#include"stdio.h"
#include"stdlib.h"
#include"string.h"
#define Max 20 //结点的最大个数
typedef struct node{
char data;
struct node *lchild,*rchild;
}BinTNode; //自定义二叉树的结点类型
typedef BinTNode *BinTree; //定义二叉树的指针
int NodeNum,leaf; //NodeNum为结点数,leaf为叶子数
//==========基于先序遍历算法创建二叉树==============
//=====要求输入先序序列,其中加入虚结点"#"以示空指针的位置========== BinTree CreatBinTree(void)
{
BinTree T;
char ch;
if((ch=getchar())=='#')
return(NULL); //读入#,返回空指针
else{
T= (BinTNode *)malloc(sizeof(BinTNode)); //生成结点
T->data=ch;
T->lchild=CreatBinTree(); //构造左子树
T->rchild=CreatBinTree(); //构造右子树
return(T);
}
}
//========NLR 先序遍历=============
void Preorder(BinTree T)
{
if(T) {
printf("%c",T->data); //访问结点
Preorder(T->lchild); //先序遍历左子树
Preorder(T->rchild); //先序遍历右子树
}
}
//========LNR 中序遍历===============
void Inorder(BinTree T)
{
if(T) {
Inorder(T->lchild); //中序遍历左子树
printf("%c",T->data); //访问结点
Inorder(T->rchild); //中序遍历右子树
}
}
//==========LRN 后序遍历============
void Postorder(BinTree T)
{
if(T) {
Postorder(T->lchild); //后序遍历左子树
Postorder(T->rchild); //后序遍历右子树
printf("%c",T->data); //访问结点
}
}
//=====采用后序遍历求二叉树的深度、结点数及叶子数的递归算法======== int TreeDepth(BinTree T)
{
int hl,hr,max;
if(T){
hl=TreeDepth(T->lchild); //求左深度
hr=TreeDepth(T->rchild); //求右深度
max=hl>hr? hl:hr; //取左右深度的最大值
NodeNum=NodeNum+1; //求结点数
if(hl==0&&hr==0) leaf=leaf+1; //若左右深度为0,即为叶子。

return(max+1);
}
else return(0);
}
//====利用"先进先出"(FIFO)队列,按层次遍历二叉树==========
void Levelorder(BinTree T)
{
int front=0,rear=1;
BinTNode *cq[Max],*p; //定义结点的指针数组cq
cq[1]=T; //根入队
while(front!=rear)
{
front=(front+1)%NodeNum;
p=cq[front]; //出队
printf("%c",p->data); //出队,输出结点的值
if(p->lchild!=NULL){
rear=(rear+1)%NodeNum;
cq[rear]=p->lchild; //左子树入队
}
if(p->rchild!=NULL){
rear=(rear+1)%NodeNum;
cq[rear]=p->rchild; //右子树入队
}
}
}
//====数叶子节点个数==========
int countleaf(BinTree T)
{
int hl,hr;
if(T){
hl=countleaf(T->lchild);
hr=countleaf(T->rchild);
if(hl==0&&hr==0) //若左右深度为0,即为叶子。

return(1);
else return hl+hr;
}
else return 0;
}
//==========主函数=================
void main()
{
BinTree root;
char i;
int depth;
printf("\n");
printf("Creat Bin_Tree; Input preorder:"); //输入完全二叉树的先序序列,
// 用#代表虚结点,如ABD###CE##F##
root=CreatBinTree(); //创建二叉树,返回根结点
do { //从菜单中选择遍历方式,输入序号。

printf("\t********** select ************\n");
printf("\t1: Preorder Traversal\n");
printf("\t2: Iorder Traversal\n");
printf("\t3: Postorder traversal\n");
printf("\t4: PostTreeDepth,Node number,Leaf number\n");
printf("\t5: Level Depth\n"); //按层次遍历之前,先选择4,求出该树的结点数。

printf("\t0: Exit\n");
printf("\t*******************************\n");
fflush(stdin);
scanf("%c",&i); //输入菜单序号(0-5)
switch (i-'0'){
case 1: printf("Print Bin_tree Preorder: ");
Preorder(root); //先序遍历
break;
case 2: printf("Print Bin_Tree Inorder: ");
Inorder(root); //中序遍历
break;
case 3: printf("Print Bin_Tree Postorder: ");
Postorder(root); //后序遍历
break;
case 4:
depth=TreeDepth(root); //求树的深度及叶子数
printf("BinTree Depth=%d BinTree Node number=%d",depth,NodeNum);
printf(" BinTree Leaf number=%d",countleaf(root));
break;
case 5: printf("LevePrint Bin_Tree: ");
Levelorder(root); //按层次遍历
break;
default: exit(1);
}
printf("\n");
} while(i!=0);
}。

相关主题