自动控制原理复习总结笔记一、自动控制理论的分析方法:(1)时域分析法;(2)频率法;(3)根轨迹法;(4)状态空间方法;(5)离散系统分析方法;(6)非线性分析方法二、系统的数学模型(1)解析表达:微分方程;差分方程;传递函数;脉冲传递函数;频率特性;脉冲响应函数;阶跃响应函数(2)图形表达:动态方框图(结构图);信号流图;零极点分布;频率响应曲线;单位阶跃响应曲线时域响应分析一、对系统的三点要求:(1)必须稳定,且有相位裕量γ和增益裕量Kg(2)动态品质指标好。
p t 、s t 、r t 、σ% (3)稳态误差小,精度高 二、结构图简化——梅逊公式 例1、解:方法一:利用结构图分析:()()()()[]()()[]()s X s Y s R s Y s X s R s E 11--=+-=方法二:利用梅逊公式 ∆∆=∑=nk KK P s G 1)(其中特征式 (11),,1,1+-+-=∆∑∑∑===Qf e d fedMk j k j N i i LL L L L L式中: ∑i L 为所有单独回路增益之和∑jiLL 为所有两个互不接触的单独回路增益乘积之和 ∑fedLL L 为所有三个互不接触的单独回路增益乘积之和其中,k P 为第K 条前向通路之总增益;k ∆ 为从Δ中剔除与第K 条前向通路有接触的项;n 为从输入节点到输出节点的前向通路数目 对应此例,则有:通路:211G G P ⋅= ,11=∆特征式:312131211)(1G G G G G G G G ++=---=∆则:3121111)()(G G G G P s R s Y ++∆= 例2:[2002年备考题]解:方法一:结构图化简继续化简:于是有:结果为其中)(s G =…方法二:用梅逊公式[]012342321123+----=∆H G G H G G G H G G通路:1,1321651=∆=G G G G G P1232521,H G G G P +=∆= 1,334653=∆=G G G G P于是:()() (3)32211=∆∆+∆+∆=P P P s R s Y三、稳态误差(1)参考输入引起的误差传递函数:()HG G s R s E 2111)(+=; 扰动引起的误差传递函数:()()HG G H G s N s E 2121+-=(2)求参考输入引起的稳态误差ssr e 时。
可以用 p K 、v K 、a K 叠加,也可以用终值定理:()s E s r s ⋅→0lim(3)求扰动引起的稳态误差 ssn e 时,必须用终值定理:()s E s N s ⋅→0lim(4)对阶跃输入:()s G K s p 00lim →= ,如()()t a t r 1⋅=,则()sa s R =,pssr K ae +=1 (5)对斜坡输入:()s G s K s v 00lim ⋅=→,如()t b t r ⋅=,则()2sbs R =,v ssr K b e = (6)对抛物线输入:()s G s K s p 020lim ⋅=→, 如()221t c t r ⋅=,则()3scs R =,a ssr K c e = 例3:求:()()s R s Y ,令()0=s N ,求()()s N s Y ,令()0=s R解:结构图化简:继续化简,有:当()0=s N 时,求得()()s R s Y =。
;当()0=s R 时,有 求得()()s N s Y =… 例4: 令()0=s N ,求()()s R s Y ,令()0=s R ,求()()s N s Y为了完全抵消干扰对输出的影响,则()?=S G x解:求()()s R s Y ,用用梅逊公式:21111,1G KG P +=∆= 1,212=∆=x G G P []12112111KG G KG KG G KG ++=---=∆则:()()12112111KG G KG G G G KG s R s Y x ++++=,同理求得()()s R s Y =… 若完全抵消干扰对输出的影响,则干扰引起的输出应该为零。
即()()s N s Y =0,故()()12112111KG G KG G G G KG s R s Y x ++++==0,所以1211G G KG G x +-=例5: 其中 ()()4111++=s s s s G n ,()()222+=s s Ks G n ,r(t)和n(t)分别是参考输入和扰动输入。
(1)求误差传递函数()()()s R s E s G re =和()()()s N s E s G ne =; (2)是否存在n1≥0和n2≥0,使得误差为零?(3)设r(t)和n(t)皆为阶跃输入,若误差为零,求此时的n1和n2解: ①()()()2111G G s R s E s G re +==, ()()()2121G G G s N s E s G ne +==,[N(s)为负]② r(t)=t,要求ssr e =0.则系统应为Ⅱ型系统,那么n1+n2=2. ③ r(t)=1(t),n(t)= 1(t),要求ss e =0,则n1+n2=1因为如()()()()()()1244+++++=s K s s s s K s N s E ,则 ()()()()()()41lim lim lim 00=⋅⋅=⋅⋅=⋅=→→→ss N s E s s N s N s E s s E s e s s s ssn 而事实上:()()()()()()1244+++++=s K s s s s Ks s N s E()()()()()()01lim lim lim 00=⋅⋅=⋅⋅=⋅=→→→ss N s E s s N s N s E s s E s e s s s ssn 可见积分环节在()s G 1部分中,而不在()s G 2中。
故n1=1,n2=0。
就可以实现要求例6:如图,当()()()︒--︒+=203cos 215sin t t t r 时,求稳态输出 解:应用频率法:()75+=ωωφj j ,则()()73tan 5857353,71tan 50575111---∠=+=-∠=+=j j j j φφ ()⎪⎭⎫ ⎝⎛-︒--⎪⎭⎫ ⎝⎛-︒+=--∞→73tan 203cos 581071tan 15sin 505|11t t t y t四、动态指标(1)二阶系统传递函数的标准形:()()2222nn n s s R s Y ωξωω++= (2)ξθ=cos ,θ越大,ξ越小 (3)21ξωθπ--=n r t ,21ξωπ-=n p t ,ns t ξω4~3=(Δ=5%或2%)例7:如图,要求%30%,1.0==σs t p ,试确定参数K ,T 。
解:()()222222///nn n s s T K T s s TK K s Ts K s R s Y ωξωω++=++=++=, 则T K n =2ω, T n 12=ξω。
由1.012=-=ξωπn p t , 3.01exp %2=⎪⎪⎭⎫⎝⎛--=ξπξσ,可得ξ=?,T=?例8:求:① 选择1K ,t K ,使得σ%≤20%,ts=1.8秒(%2±=∆) ② 求p K 、v K 、a K ,并求出()()t t t r +=1时的稳态误差解:① ()()⎩⎨⎧==⇒++=++=tn n nn n t K K K s s K s K K s K s R s Y 112222112122ξωωωξωω 由σ%≤20%,则%201exp 2≤⎪⎪⎭⎫⎝⎛--ξπξ,求得ξ≥… 由8.14==ns t ξω,求得n ω≤。
,从而得1K 、t K 。
② 由传递函数:()()t K K s s K s G 110+=得,()∞==→s G K s p 00lim ,()ts v K s G s K 1lim 00=⋅=→,()0lim 020=⋅=→s G s K s a 当()()t t t r +=1时,t t vp ss K K K K e =+=++=0111频率法一、基本概念:()()ωωj G s G j s ==,输入是正弦信号,稳态输出。
如:()t R t r 11sin ω=,则()()()()()⎪⎪⎭⎫⎝⎛+∠++=1111111sin 1ωωωωωj G j G t R j G j G t y 二、① 惯性环节1+Ts K,()221ωωT K j G +=, ()()ωωT j G 1tan --=∠,︒-→︒900②()11+Ts s K ,()221ωωωT Kj G +=()()ωωT j G 1tan 90--︒-=∠,则:+∞→0:ω,()︒-→︒-18090:ωφ,()0→∞:ωA注意:321ωωω==因为()()()()(ωωφωφωφT j G 1321tan 90--︒-=∠===③()()1121++s T s T K,(如图3)则()()()()ωωωωφω112221tan 11T T T KA ---∠+⋅+=∠④()()1121++s T s T s K,(如图4)()()()()ωωωωωωφω21112221tan tan 9011T T T T KA ----︒-∠+⋅+=∠求w1。
因()︒-=1801ωφ,故︒=+⇒︒-=--︒-----90tan tan 180tan tan 9021112111ωωωωT T T T两边取正切:21212111T T T T T T =⇒∞=⋅-+ωωωωω ⑤()()()11121+++s T s T s s K τ,其中21T T >>τ,(如图5)⑥ 增益裕量:()11ωA K g =,相位裕量:()c ωϕγ+︒=180,如图6注意:用()1=c j G ω求K ;用()︒=-180tan 11ωj G 求w1。
例1:()()()11121+++s T s T s s K τ,T1>T2,K=10,作出波德图 例2:求:(1)写出开环传递函数()s G 0 (2)计算系统的相位裕量和增益裕量(3)做出()s G 0的Nyquist 曲线,并分析闭环系统的稳定性 解:① ()()()11.01220++=s s s K s G可见图中2=c ω,因为幅频特性曲线在w1=0.5和w2=10时发生转折,显然w=2时,曲线只在w1=0.5发生转折,而未到w2=10。
故w2=10不发生作用,所以()112222=⇒=⨯⋅K K ,故()()11.0122++=︒s s s s G ② 相位裕量:()......2tan 4tan 18011=-=+︒=--c ωϕγ 因为()︒=-180tan 101ωj G ,则∞=⇒=⇒=⇒=--g K 01.021.0tan 2tan 1111111ωωωωω③:则Z=0,N=0,P=0。