材料力学弯曲刚度
- 5 128
FPl2 EI
处理具体问题时的注意点
d2w dx2
M(x) EI
讨论:积分法步骤总结
确定约束力 分段写出弯矩方程 分段建立挠度微分方程并积分
利用约束条件确定积分常数 确定挠度与转角方程以及指定截面的挠度与转角
第6章 弯曲刚度
6.3 叠加法确定梁的挠度与转角
6.3 叠加法确定梁的挠度与转角
第6章 弯曲刚度
各种车辆中用于 减振的板簧,都是 采用厚度不大的板 条叠合而成。
可以承受很大的力而不发生破坏 能承受较大的弹性变形,吸收车辆受到振动和 冲击时产生的动能,收到抗振和抗冲击的效果。 利用弯曲变形(刚度问题)
第6章 弯曲刚度
静不定梁
F
A
B
1/2L
1/2L
1 FL 32
(+)
(+)
9 FL 512
讨论:叠加法应用于多个荷载作用的情形的解题步骤 ● 将其分解为各种荷载单独作用的情形 ● 由挠度表分别查得各种情形下的挠度和转角 ● 将所得结果叠加
思考题4
二梁的受力(包括荷载与约束力)是否相同? 二梁的弯矩是否相同? 二梁的变形是否相同? 二梁的位移是否相同? 位移不仅与变形有关,而且与约束有关。
wC和转角C。
6.3 叠加法确定梁的挠度与转角
F
A
C
a
b
l
x0,wA0
xl,wB0
xa, C C
xa, wCwC
D
h
B
F EA
A
C
a
bB
l
x0,wA0
xa, C C
xa, wCwC
xl,w BlBD FEBAy h
6.2 梁的小挠度微分方程及其积分
4. 梁的连续光滑挠曲线的绘制 由M的方向确定轴线的凹凸性。 由约束性质及连续光滑性确定挠度曲线的大致
d2w M(x)
dx2
EI
对于等截面梁,弯曲刚度为常量时
积分一次: ddw xl MEIxdxC
(转角方程)
积分二次: wM E (x)Idxd xC xD(挠度方程)
式中C、D为积分常数,由梁的约束条件决定。
6.2 梁的小挠度微分方程及其积分
3. 小挠度微分方程积分常数的确定 ——梁的约束条件(边界条件和连续性条件)
Nanjing University of Technology
材料力学 (6)
材料力学
第6章 弯曲刚度
第6章 弯曲刚度
工程中的弯曲变形问题
限制弯曲变形 (刚度问题)
第6章 弯曲刚度
机械传动机构中的齿轮 轴,当变形过大时(图中虚 线所示),两齿轮的啮合处 也将产生较大的变形。
影响两个齿轮之间的啮合 加大齿轮磨损,产生很大的噪声 机床主轴的挠度过大会影响加工精度; 限制弯曲变形(刚度问题)
思考题5
FP
A
B
C BC段梁均视为
刚体。
BC段有没有变形?有没有位移?没有变形 为什么会有位移?
总体变形是微段变形累加的结果。
有位移不一定有变形。
6.3 叠加法确定梁的挠度与转角
3. 第二类叠加法 ——应用于间断性分布荷载作用的情形
例题4
悬臂梁受力如图所
示,q、l、EI均为已知。
求:C截面的挠度
AB段 BC段
xE FP I83x21278l2
xE FP I8 3x21 2x4 l212 78l2
wxFP1x37l2x
EI 8 128
w xFP1x31xl37l2x
EI8 6 4 128
算得加力点B处的挠度和支承处A和C的转角分别为
wB
3 FPl3 256 EI
A
7 128
FPl 2 EI
B
6
EIw1qlx4CxD
24
C
ql3 ,
6
D ql3 24
5. 确定挠度与转角方程
w24qEIlx44l3xl4
q
6EI
lx3l3
6. 确定最大挠度与最大转角
从挠度曲线可以看出,在悬臂梁自由端处,挠度和转角均为最
大值。 于是,将 x = l,分别代入挠度方程与转角方程,得到:
wmax
wB
ql4 8EI
于是,AB和BC两段的弯矩方程分别为
AB段
M1x3 4FPx 0x4 l
BC段
M 2x3 4F Px - F P x - 4 l 4 lxl
6.2 梁的小挠度微分方程及其积分
例题2
M1x3 4FPx 0x4 l M 2x3 4F Px - F P x - 4 l 4 lxl
max
B
ql3 6EI
6.2 梁的小挠度微分方程及其积分
例题2
简支梁受力如图所示。
FP、EI、l均为已知。
求:加力点B的挠度和
支承A、C处的转角。
6.2 梁的小挠度微分方程及其积分
例题2
解:1.确定梁约束力
首先,应用静力学方法求得 梁在支承A、C二处的约束力分别 如图中所示。
解: 2. 分段建立梁的弯矩方程
■ 挠曲线 :梁变形后的轴线。
挠度方程:ww(x) 转角方程: (x)
注意:当变形保持在弹性范围内,挠曲线为连续光滑曲线。
2. 挠度与转角的关系
tan w dw A
dx
w
挠曲线
转角
C
B
x
C'
挠度w
B'
A
挠曲线 w
6.1 梁的变形与位移
tan w dw
dx
在小变形条件下,挠度曲 线较为平坦。
即很小,因而上式中tan。
9 FL 512
求解静不定问题 建立补充方程 利用弯曲变形(求解静不定问题)
第6章 弯曲刚度
6.1 梁的变形与位移 6.2 梁的小挠度微分方程及其积分 6.3 叠加法确定梁的挠度与转角 6.4 梁的刚度问题 6.5 提高梁刚度的措施 6.6 简单的静不定梁
第6章 弯曲刚度
6.1 梁的变形与位移
6.1 梁的变形与位移
1. 基本概念
■ 取梁的左端点为坐标原点,梁变形前的轴线为 x 轴 (向右为正) ,横截面的铅垂对称轴为 w 轴(向下为 正) , x w 平面为纵向对称面。
■ 量梁变形
后横截面位置改
A
变,即位移,有
三个基本量。
w
B x
B'
6.1 梁的变形与位移
挠度deflection( w):横截面形心 C (即轴线上的点)
角B。
6.3 叠加法确定梁的挠度与转角
例题3
解:1.将梁上的荷载变 为三种简单的情形。
w Cw C 1w C 2w C 3
BB1B2B3
6.3 叠加法确定梁的挠度与转角
例题3
2.由挠度表查得三种情形下C
截面的挠度和B 截面的转角。
5 ql 4
w C 1 384
, EI
1 ql 4 w C 2 48 EI ,
于是有
转角
C
Bx
w 挠度
C'
B'
挠度与转角的相互关系
w dw
dx
6.1 梁的变形与位移
■ 挠度和转角符号的规定 挠度:向下为正,向上为负。 转角:顺时针转为正,逆时针转为负。
A 挠曲线
w
转角
C
B
x
C'
w 挠度
B'
第6章 弯曲刚度
6.2 梁的小挠度微分方程及其积分
6.2 梁的小挠度微分方程及其积分
变形后
6.2 梁的小挠度微分方程及其积分
d2w
dx2
3
1
dw dx
2
2
M x
EI
小挠度情形下
2 dw2 1
dx
d2w Mx
dx2 EI
对于弹性曲线的小挠度微分方程,式中的正负号与 w坐标的取向有关。
本书规定的坐标系为: x 轴水平向右为正, w 轴竖直 向下为正。
6.2 梁的小挠度微分方程及其积分
梁的边界条件
①在固定端处:
x 0 , A w A 0 , w 0
A
Bx
w
②在固定铰支座和滚动铰支座处:
A
w
l
x0, wA0;
B x
xl, wB0.
6.2 梁的小挠度微分方程及其积分
梁的连续性条件
①在集中力作用处:
P
A
C
B
wC wC
C
C
M
A C
②在中间铰处: B
a
l
wC wC
练习
写出下图的边界条件、连续性条件:
的铅垂位移。
转角slope():变形后的横截面相对于变形前位置绕中
性轴转过的角度。
转角
A
C
B
x
挠度w
C'
w B'
6.1 梁的变形与位移
转角
A
C
B
x
挠度w
C'
w B'
轴向位移( u ):横截面形心沿水平方向的位移。
在小变形情形下,上述位移中,轴向位移u与挠 度w相比为高阶小量,故通常不予考虑。
6.1 梁的变形与位移
x
M(x)
FQ(x)
解:1.建立Oxw坐标系
2.建立梁的弯矩方程
M (x)1qlx2
2 3. 建立微分方程并积分
0xl
将上述弯矩方程代入小挠度微分方程,得
EIw"M1qlx2
2
d2w M(x) dx2 EI
6.2 梁的小挠度微分方程及其积分