当前位置:文档之家› 110kv变电站电气设计论文说明

110kv变电站电气设计论文说明

第一部分.设计说明书一、设计题目110KV降压变电站部分的设计二、所址概况1、变电站的电压等级 110/35/10KV2、电力负荷水平35KV电压级:共计4回出线,2回最大输送功率6MW,送电距离30公里;2回最大输送功率8MW,送电距离25公里,功率因数COSΦ =0.83,一、二类负荷所占比重65%。

10KV 电压级:共计12回出线,5回最大输送功率1.5MW,送电距离8公里;7回最大输送功率1.3MW,送电距离10公里,功率因数COS Φ=0.78,一、二类负荷所占比重60%.变电站综合负荷曲线见图一,其中最大负荷同时率为0.9,负荷曲线上部为冬季213天,下部为夏季152天。

3、系统情况系统接线图及参数见图二,系统最小运行方式为接线图左边电源侧停运一台100MW机组;系统中性点接地方式为两台主变只一点接地;110KV侧两回架空进线方向,正西一回,西南一回;35KV侧出线方向正北两回,东北两回;10KV侧出线方向待定。

4、自然条件:站址为农田,土质为砂质粘土;海拔150米;地震裂度为4,处于IV 类气象区;污秽等级为1;土壤电阻率50Ω/m.三、负荷情况:第二章:负荷分析1、一级负荷:中断供电将造成人身伤亡或重大设计损坏,且难以挽回,带来极大的政治、经济损失者属于一级负荷。

一级负荷要求有两个独立电源供电。

2、二级负荷:中断供电将造成设计局部破坏或生产流程紊乱,且较长时间才能修复或大量产品报废,重要产品大量减产,属于二级负荷。

二级负荷应由两回线供电。

但当两回线路有困难时(如边远地区),允许有一回专用架空线路供电。

3、三级负荷:不属于一级和二级的一般电力负荷。

三级负荷对供电无特殊要求,允许较长时间停电,可用单回线路供电。

4、35KV侧:ΣP1=8MW+6MW=14MW计及五年规划14MW*1.276=17.86 MWΣQ1=8000*0.64+6000*0.64=8960Kvar5、10KV侧:ΣP2=1.5MW+1.3MW=2.8MW计及五年规划2.8MW*1.276=3.57MWΣQ2=1500*0.809+1300*0.809=2265KvarΣP=ΣP1+ΣP2=17.86MW+3.3.57MW=19.32MWΣQ=ΣQ1+ΣQ2=8960+2265=11225Kvar 17.86/0.83=21.20MVA3.57/0.78=4.58MVA所以:ΣS=21.20+4.58=25.78MVA 变电站用电按总负荷的0.4%计25.78*0.4%=0.103MVA 考虑线损:25.88*35%=0.776MW本站总负荷为:ΣS=25.78+0.103+0.776=26.66MVA第三章主变压器的选择(参考资料:《电力工程电气设计手册》电器一次部分,第五章:主变压器选择)一、主变台数的确定对于大城市郊区的一次变电所,在中、低压侧已构成环网的情况下,变电所以装设两台主变压器为宜。

此设计中的变电所符合此情况,故主变设为两台。

二、主变容量的确定1、主变压器容量一般按变电所建成后5-10年的规划负荷选择,并适当考虑到远期10-20年负荷发展。

对城郊变电所,主变压器容量应与城市规划相结合。

2、根据变电所所带负荷的性质和电网结构来确定主变压器的容量。

对于有重要负荷的变电所,应考虑到当一台主变压器停运时,其余变压器容量在计及过负荷能力后的允许时间,应保证用户的一级和二级负荷;对一般性变电所,当一台主变压器停运时,其余变压器容量应能保证全部负荷的70%-80%。

此变电所是一般性变电所。

有以上规程可知,此变电所单台主变的容量为:S=26659*80%=21327KVA所以应选容量为31500KVA的主变压器。

三、主变相数选择1、主变压器采用三相或是单相,主要考虑变压器的制造条件、可靠性要求及运输条件等因素。

2、当不受运输条件限制时,在110KV及以下的发电厂和变电所,均应采用三相变压器。

社会日新月异,在今天科技已十分进步,变压器的制造、运输等等已不成问题,故有以上规程可知,此变电所的主变应采用三相变压器。

四、主变绕组数量1)、在具有三种电压的变电所中,如通过主变压器各侧的功率均达到该变压器容量的15%以上,或低压侧虽无负荷,但在变电所需装设无功补偿装备时,主变压器宜采用三绕组变压器。

根据以上规程,计算主变各侧的功率与该主变容量的比值:高压侧:K1=(16000+2800)*0.8/31500=0.427>0.15中压侧:K2=16000*0.8/31500=0.406>0.15低压侧:K3=2800*0.8/31500=0.2>0.15由以上可知此变电所中的主变应采用三绕组。

五、主变绕组连接方式变压器的连接方式必须和系统电压相位一致,否则不能并列运行。

电力系统采用的绕组连接方式只有y和△,高、中、低三侧绕组如何要根据具体情况来确定。

我国110KV及以上电压,变压器绕组都采用Y0连接;35KV亦采用Y连接,其中性点多通过消弧线接地。

35KV及以下电压,变压器绕组都采用△连接。

由以上知,此变电站110KV侧采用Y0接线35KV侧采用Y连接,10KV侧采用△接线主变中性点的接地方式:选择电力网中性点接地方式是一个综合问题。

它与电压等级、单相接地短路电流、过电压水平、保护配置等有关,直接影响电网的绝缘水平、系统供电的可靠性和连续性、变压器和发电机的运行安全以及对通信线路的干扰。

主要接地方式有:中性点不接地、中性点经消弧线圈接地和直接接地。

电力网中性点的接地方式,决定了变压器中性点的接地方式。

电力网中性点接地与否,决定于主变压器中性点运行方式。

35KV系统,I C<=10A;10KV系统;I C<=30A(采用中性点不接地的运行方式)35KV:Ic=UL/350=35*(8+6+10*2+7*2+11)/350=5.9A<10A10KV:Ic=10*(5*3+7*2+1.5+1.3+7*2)/350+10*(2*2+3)/10=8.3A<30A所以在本设计中110KV采用中性点直接接地方式35、10KV采用中性点不接地方式六、主变的调压方式《电力工程电气设计手册》(电器一次部分)第五章第三节规定:调压方式变压器的电压调整是用分解开关切换变压器的分接头,从而改变变压器变比来实现的。

切换方式有两种:不带电切换,称为无励磁调压,调压围通常在+5%以,另一种是带负荷切换,称为有栽调压,调压围可达到+30%。

对于110KV及以下的变压器,应考虑至少有一级电压的变压器采用有载调压。

由以上知,此变电所的主变压器采用有载调压方式。

七、变压器冷却方式选择参考《电力工程电气设计手册》(电器一次部分)第五章第四节主变一般的冷却方式有:自然风冷却;强迫油循环风冷却;强迫油循环水冷却;强迫、导向油循环冷却。

小容量变压器一般采用自然风冷却。

大容量变压器一般采用强迫油循环风冷却方式。

故此变电所中的主变采用强迫油循环风冷却方式。

附:主变型号的表示方法第一段:汉语拼音组合表示变压器型号及材料第一部分:相数 S----三相;D------单相第二部分:冷却方式 J----油浸自冷; F----油浸风冷;S----油浸水冷;G----干式;N----氮气冷却;FP----强迫油循环风冷却;SP----强迫油循环水冷却本设计中主变的型号是:SFSL7—31500/110第四章无功补偿装置的选择一、补偿装置的意义无功补偿可以保证电压质量、减少网络中的有功功率的损耗和电压损耗,同时对增强系统的稳定性有重要意义。

二、无功补偿装置类型的选择(参考资料:教材----《电力系统》第五章第四节:《电力工程电器设计手册》电器一次部分三、无功补偿装置容量的确定(根据现场经验)现场经验一般按主变容量的10%--30%来确定无功补偿装置的容量。

此设计中主变容量为31500KVA故并联电容器的容量为:3150KVA—9450KVA为宜,在此设计中取12000KVA。

四、并联电容器装置的分组(参考资料:《电力工程电气设计手册》电气一次部分第九章第四节)1、分组原则1)、并联电容器装置的分组主要有系统专业根据电压波动、负荷变化、谐波含量等因素确定。

2)、对于单独补偿的某台设备,例如电动机、小容量变压器等用的并联电容器装置,不必分组,可直接与设备相联接,并与该设备同时投切。

对于110KV—220KV、主变代有载调压装置的变电所,应按有载调压分组,并按电压或功率的要行自动投切。

3)、终端变电所的并联电容器设备,主要是为了提高电压和补偿变压器的无功损耗。

此时,各组应能随电压波动实行自动投切。

投切任一组电容器时引起的电压波动不应超过2.5%。

2、分组方式1)、并联电容器的分组方式有等容量分组、等差容量分组、带总断路器的等差容量分组、带总断路器的等差级数容量分组。

2)、各种分组方式比较a、等差容量分组方式:由于其分组容量之间成等差级数关系,从而使并联电容器装置可按不同投切方式得到多种容量组合。

即可用比等容量分组方式少的分组数目,达到更多种容量组合的要求,从而节约了回路设备数。

但会在改变容量组合的操作过程中,会引起无功补偿功率较大的变化,并可能使分组容量较小的分组断路器频繁操作,断路器的检修间隔时间缩短,从而使电容器组退出运行的可能性增加。

因而应用围有限。

b、带总断路器的等差容量分组、带总断路器的等差级数容量分组,当某一并联电容器组因短路故障而切除时,将造成整个并联电容器装置退出运行。

c、等容量分作方式,是应用较多的分作方式。

综上所述,在本设计中,无功补偿装置分作方式采用等容量分组方式。

五、并联电容器装置的接线并联电容器装置的基本接线分为星形(Y)和三角形(△)两种。

经常使用的还有由星形派生出来的双星形,在某种场合下,也采用由三角形派生出来的双三角形。

由以上可知:应采用双星形接线。

因为双星形接线更简单,而且可靠性、灵敏性都高,对电网通讯不会造成干扰,适用于10KV及以上的大容量并联电容器组。

中性点接地方式:对该变电所进行无功补偿,主要是补偿主变和负荷的无功功率,因此并联电容器装置装设在变电所低压侧,故采用中性点不接地方式。

六、并联电容器对10KV系统单相接地电流的影响10KV系统的中性点是不接地的,该变电站采用的并联电容器组的中性点也是不接地的,当发生单相接地故障时,构不成零序电流回路,所以不会对10KV 系统造成影响。

第五章电气主接线的初步设计及方案选择参考资料:1、《发电厂电气设备》(于长顺主编)第十章2、《电力工程电气设计手册》(一次部分)第二章一、电气主接线的概况1、发电厂和变电所中的一次设备、按一定要求和顺序连接成的电路,称为电气主接线,也称主电路。

它把各电源送来的电能汇集起来,并分给各用户。

相关主题