电化学方法制备纳米材料Mcc引言:诺贝尔奖获得者Feyneman在六十年代曾经预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。
他所说的材料就是现在的纳米材料。
纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。
1992年,《Nanostructured Materials》正式出版,标志着纳米材料学成为一门独立的科学。
自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。
由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。
作为高级纳米结构材料和纳米器件的基本构成单元,纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。
而电化学方法制备纳米材料的研究,经历了早期的纳米薄膜、纳米微晶的制备,直至现在的电化学制备纳米金属线、金属氧化物等过程,为纳米材料的研究做出了极大的贡献。
摘要:纳米是指特征维度尺寸介于1-100 nm范围内的粒子微小粒子,又称作超微粒子。
当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。
本文简单综述了纳米材料的合成与制备中常用的几种方法以及简单的一些应用,着重综述了纳米材料的电化学制备方法并对其影响因素和发展情景做以简单探究。
关键词:纳米材料电化学制备特征应用Electrochemical preparation of nano materialsMccIntroduction:Nobel Prize winner in the s Feyneman prophecy: if we tiny scale of objects arranged to some control of words, we can make the object have a lot of unusual characteristics, you will see the properties of materials have a wealth of change. What he said is the material of the nanometer material now.Nano materials and nanotechnology is widely thought to be the 21 st century the most important new materials and one of the areas of science and technology. In 1992, the Nanostructured Materials "the official publication, marked the nanometer material science into an independent scientific < /gongxue/ >. Since 1991, the first time the Iijima preparation since carbon nanotubes, a one-dimensional nanomaterials due to the nature of the has many special and broad application prospects and caused the people's attention. Because the morphology of nanometer material and size of its performance has the important influence, therefore, the sizeand morphology of nanometer materials control synthesis is very important. As a senior nano structure materials and nano device the basic constitution unit (Bui1ding Blocks), nanoparticles of synthesis and assembly is an important part of the nanometer technology and the foundation. And electrochemical methods preparing nanometer material research, the experienced early nano, film, nano microcrystalline preparation, up until now the electrochemical preparation nanometer metal wire, metal oxide process, for nano materials made great contribution.Abstract: nano is refers to the characteristic dimension size between 1-100 nm range of particle of tiny particles, called particle. When a particle size is small to the nanometer level, its will have face and interface effect, quantum size effect, small size effect and the macroscopic quantum tunnel effect, these effects makes the nano material has many strange performance. In this paper, the author briefly reviewed the synthesis and preparation of nanometer materials used in several ways and simple some applications, nanometer material reviewed emphatically the electrochemical preparation methods and the influence factors and the development situation to do simple explored.Keywords: nano materials Electrochemical preparation Characteristics application一、纳米材料纳米是指特征维度尺寸介于1-100 nm范围内的粒子微小粒子,又称作超微粒子。
处在原子簇和宏观物体交界的过渡区域,是一种典型的介观系统;它的大小介于宏观物质与微观粒子如电子、原子、分子之间,属于亚微观的范畴。
人们将晶体区域或其它特征长度在纳米量级范围(小于100nm)的材料广义定义为"纳米材料"或"纳米结构材料"(nanostructured materials)。
纳米材料由两种组元构成:晶体组元和界面组元。
晶体组元由晶粒中的原子组成,这些原子都严格位于晶格位置上;界面组元由各晶粒之间的界面原子组成,这些原子由超微晶粒的表面原子转化而来。
由于其独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,其领域涉及:物理、化学、生物、微电子等诸多学科。
目前,广义的纳米材料的主要包括:(l)清洁或涂层表面的金属、半导体或聚合物薄膜;(2)人造超晶格和量子阱结构;(3)结晶聚合物和聚合物混和物;(4)纳米晶体和纳米玻璃材料;(5)金属键、共价键或分子组元构成的纳米复合材料。
经过科学家长期的的研究与探索,现已在纳米材料制备方法、结构表征、物理和化学性能、实用化等方面取得显著进展,研究成果日新月异,研究范围不断拓宽。
二、纳米材料的性能1. 原子的扩散行为原子扩散行为影响材料的许多性能,诸如:蠕变、超塑性、电性能和烧结性等。
纳米晶Co的自扩散系数比Cu的体扩散系数大14~16个量级,比Cu的晶界自扩散系数大3个量级。
研究表明:Fe在纳米晶N i中的扩散系数远低于早期报道的结果。
纳米晶Pd的界面扩散数据类似于普通的晶界扩散,这很可能是由于纳米粒子固结成的块状试样中的残留疏松的影响。
2.力学性能目前,关于纳米材料的力学性能研究,主要包括:硬度、断裂韧性、压缩和拉伸的应力—应变行为、应变速率敏感性、疲劳和蠕变等的研究,所研究的材料涉及不同方法制备的纯金属、合金、金属间化合物、复合材料和陶瓷。
研究纳米材料本征力学性能的关键是获得内部没有(或很少)孔隙、杂质或裂纹的块状试样。
研究表明许多纳米纯金属的室温硬度比相应的粗晶高2~7倍。
例如,纳米晶Pd的杨氏和剪切模量大约是相应全密度粗晶的70%,这完全是样品中的缺陷造成的,纳米晶Pd和Cu的弹性常数与相应粗晶大致相同,屈服强度是退火粗晶的10~15倍。
另外,纳米金属材料的韧性都很低,主要原因是纳米晶体材料中存在各类缺陷、微观应力及界面状态等。
用适当工艺制备的无缺陷、无微观应力的纳米晶体Cu,其拉伸应变量可高达30%,说明纳米金属材料的韧性可以大幅度提高。
3.纳米晶金属的磁性早期的研究发现,纳米晶Fe的饱和磁化强度比普通块材a-Fe约低40%。
Wagner等用小角中子散射(SANS)实验证实纳米晶Fe由铁磁性的晶粒和非铁磁性(或弱铁磁性)的界面区域构成,界面区域体积约占一半。
纳米晶Fe的磁交互作用不仅限于单个晶粒,而且可以扩展越过界面,使数百个晶粒磁化排列。
4.催化及贮氢性能在催化剂材料中,反应的活性位置可以是表面上的团簇原子,或是表面上吸附的另一种物质。
这些位置与表面结构、晶格缺陷和晶体的边角密切相关。
由于纳米晶材料可以提供大量催化活性位置,因此很适宜作催化材料。
典型的如 Rh/Al2O3、 Pt/C之类金属纳米颗粒弥散在情性物质上的催化剂。
已在石油化工、精细化工合成、汽车排气许多场合应用。
三、纳米材料的特征纳米材料的特征主要有小尺寸效应、表面和界面效应、量子效应、宏观量子隧道效应等。