高中物理速度选择器和回旋加速器解题技巧及经典题型及练习题(1)一、速度选择器和回旋加速器1.如图为质谱仪的原理图。
电容器两极板的距离为d ,两板间电压为U ,极板间的匀强磁场的磁感应强度为B 1,方向垂直纸面向里。
一束带电量均为q 但质量不同的正粒子从图示方向射入,沿直线穿过电容器后进入另一磁感应强度为B 2的匀强磁场,磁场B 2方向与纸面垂直,结果分别打在a 、b 两点,若打在a 、b 两点的粒子质量分别为1m 和2m .求:(1)磁场B 2的方向垂直纸面向里还是向外? (2)带电粒子的速度是多少?(3)打在a 、b 两点的距离差△x 为多大? 【答案】(1)垂直纸面向外 (2)1Uv B d = (3)12122()U m m x qB B d-∆=【解析】 【详解】(1)带正电的粒子进入偏转磁场后,受洛伦兹力而做匀速圆周运动, 因洛伦兹力向左,由左手定则知,则磁场垂直纸面向外. (2)带正电的粒子直线穿过速度选择器,受力分析可知:1UqvB qd= 解得:1U v B d=(3)两粒子均由洛伦兹力提供向心力22v qvB m R=可得:112m v R qB =,222m vR qB = 两粒子打在底片上的长度为半圆的直径,则:1222x R R ∆=-联立解得:12122()U m m x qB B d-∆=2.如图所示,水平放置的平行板电容器上极板带正电,下极板带负电,两板间存在场强为 E 的匀强电场和垂直纸面向里的磁感应强度为 B 匀强磁场.现有大量带电粒子沿中线 OO ′ 射入,所有粒子都恰好沿 OO ′ 做直线运动.若仅将与极板垂直的虚线 MN 右侧的磁场去掉,则其中比荷为qm的粒子恰好自下极板的右边缘P 点离开电容器.已知电容器两板间的距离为23mEqB ,带电粒子的重力不计。
(1)求下极板上 N 、P 两点间的距离;(2)若仅将虚线 MN 右侧的电场去掉,保留磁场,另一种比荷的粒子也恰好自P 点离开,求这种粒子的比荷。
【答案】(1)3mE x =2)'4'7q q m m = 【解析】 【分析】(1)粒子自 O 点射入到虚线MN 的过程中做匀速直线运动,将MN 右侧磁场去掉,粒子在MN 右侧的匀强电场中做类平抛运动,根据类平抛运动的的规律求解下极板上 N 、P 两点间的距离;(2)仅将虚线 MN 右侧的电场去掉,粒子在 MN 右侧的匀强磁场中做匀速圆周运动,根据几何关系求解圆周运动的半径,然后根据2''m v q vB R= 求解比荷。
【详解】(1)粒子自 O 点射入到虚线MN 的过程中做匀速直线运动,qE qvB =粒子过 MN 时的速度大小 E v B=仅将MN 右侧磁场去掉,粒子在MN 右侧的匀强电场中做类平抛运动,沿电场方向:22322mE qE t qB m= 垂直于电场方向:x vt =由以上各式计算得出下极板上N 、 P 两点间的距离23mEx qB =(2)仅将虚线 MN 右侧的电场去掉,粒子在 MN 右侧的匀强磁场中做匀速圆周运动,设经过 P 点的粒子的比荷为''q m ,其做匀速圆周运动的半径为 R ,由几何关系得:22223()2mE R x R qB =+- 解得 274mER qB =又 2''m v q vB R=得比荷'4'7q q m m=3.如图,在整个直角坐标系xoy 区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在x>0区域还存在方向垂直于xoy 平面向内的匀强磁场。
一质量为m 、电荷量为q 的带正电粒子从x 轴上x=-L 的A 点射出,速度方向与x 轴正方向成45°,粒子刚好能垂直经过y 轴,并且在第一象限恰能做直线运动,不计粒子重力(1)求粒子经过y 轴的位置 (2)求磁感应强度B 的大小(3)若将磁场的磁感应强度减小为原来的一半,求粒子在x>0区域运动过程中的最大速度和最低点的y 坐标。
【答案】(1)y=12L (2)mE B qL = (3)3m qEL v m= 72y L =-【解析】 【分析】(1)粒子在第二象限做类平抛运动,根据平抛运动的规律求解粒子经过y 轴的位置;(2)粒子在第一象限恰能做直线运动,则电场力等于洛伦兹力,可求解B ;(3)将x>0区域的曲线运动看做以2v 1的匀速直线运动和以v 1的匀速圆周运动的合成,结合直线运动和圆周运动求解最大速度和最低点坐标。
【详解】(1)粒子在第二象限做类平抛运动,设初速度为v ,1222v v v ==L=v 1t22v y t =联立解得2L y =,则经过y 轴上2Ly =的位置; (2)qE a m= v 2=at 可得1qELv m= qv 1B=qE 解得mEB qL=(3)将x>0区域的曲线运动看做以2v 1的匀速直线运动和以v 1的匀速圆周运动的合成,如图;2112v Bqv m r⋅=解得2122mv r L qE == 24y r L ∆==最低点y 坐标为1722y L y L =-∆=-此时速度最大为v m =2v 1+v 1 解得3m qELv m=4.如图所示,一对平行金属极板a 、b 水平正对放置,极板长度为L ,板间距为d ,极板间电压为U ,且板间存在垂直纸面磁感应强度为B 的匀强磁场(图中未画出)。
一带电粒子以一定的水平速度从两极板的左端正中央沿垂直于电场、磁场的方向射入极板间,恰好做匀速直线运动,打到距离金属极板右端L 处的荧光屏MN 上的O 点。
若撤去磁场,粒子仍能从极板间射出,且打到荧光屏MN 上的P 点。
已知P 点与O 点间的距离为h ,不计粒子的重力及空气阻力。
(1)请判断匀强磁场的方向;(2)求带电粒子刚进入极板左侧时的速度大小v ; (3)求粒子的比荷(qm)。
【答案】(1)磁场方向垂直纸面向里(2)v =U Bd (3)2223q Uh m B L d= 【解析】 【分析】(1)由左手定则可知磁场方向。
(2)粒子在极板间做直线运动,可知洛伦兹力与电场力相等;(3)若撤去磁场,粒子在电场中做类平抛运动,结合水平和竖直方向的运动特点解答; 【详解】(1)由左手定则可知,磁场方向垂直纸面向里。
(2)带电粒子受力平衡,有qvB q =U d粒子进入极板时的速度v =U Bd(3)带电粒子在两极板间运动时间t 1=L v ,加速度qU a md= 带电粒子穿过电场时的侧移量22112122qUL y at mdv== 带电粒子离开两极板间后做匀速直线运动的时间t 2=Lv带电粒子从极板右端射出时沿竖直方向的速度v y =1qULatmdv=带电粒子离开两极板间后在竖直方向的位移2222yqULy v tmdv==两次侧移量之和为h,即:h=y1+y2=2232qULmdv解得:2223q Uhm B L d=【点睛】此题是带电粒子在复合场中的运动问题;关键是搞清粒子在场中的运动特征和受力情况;粒子在电场中的偏转问题,主要是结合类平抛运动的规律解答.5.回旋加速器的工作原理如图甲所示,置于高真空中的D形金属盒半径为R,两盒间距很小,带电粒子穿过的时间可以忽略不计。
磁感应强度为B0的匀强磁场与盒面垂直。
在下极板的圆心A处粒子源产生的粒子,质量为m、电荷量为+q,在加速器中被加速,加速电压u 随时间的变化关系如图乙所示2mTqBπ=。
加速过程中不考虑相对论效应和变化电场对磁场分布的影响。
(1)粒子开始从静止被加速,估算该离子离开加速器时获得的动能E k;(2)调节交流电的电压,先后两次的电压比为1:2,则粒子在加速器中的运动时间之比为多少?(3)带电粒子在磁场中做圆周运动的圆心并不是金属盒的圆心O,而且在不断的变动。
设第一次加速后做圆周运动的圆心O1到O的距离为x1,第二次加速后做圆周运动的圆心O2到O 的距离为x2,这二个距离平均值约为最后从加速器射出时圆周运动的圆心位置x,求x的值,并说明出口处为什么在A的左边;(4)实际使用中,磁感应强度B会出现波动,若在t=4T时粒子第一次被加速,要实现连续n 次加速,求B可波动的最大范围。
【答案】(1)2()2qB Rm;(2)2:1;(3)021mUB qA点的左边,最后一次圆周运动与左边相切,所以出口在A点的左边;(4)0021212123n n B B B n n --≤≤--()(),n =2、3…… 【解析】 【分析】根据回旋加速器原理,粒子在电场中加速,在磁场中偏转,根据轨道半径与运动周期可求运动动能及运动时间,若磁场出现波动,求出磁感强度的最大值和最小值,从而确定磁感强度的范围。
【详解】(1)圆周运动的最大半径约为R20v qvB m R=离子离开加速器时获得的动能220()122k qB R E mv m==(2)设加速n 次200()2qB R nqU m=22002qB R n mU =20022B R T t n U π==运动时间之比02120121U t t U == (3)设第一、二次圆周运动的半径为r 1和r 220112qU mv =110mv r qB ==202122qU mv =220mv r qB === 11x r =21212(2x r r r =-=可得121023210.79322mU x x x r B q+-=== 第一次圆周运动的圆心在A 点的左边,最后一次圆周运动与左边相切,所以出口在A 点的左边。
(4)设磁感应强度偏小时为B 1,圆周运动的周期为T 11(1)224T T T n --=)(12-12(-1)n T T n =解得102(1)21n B B n -=- 设磁感应强度偏大时为B 2,圆周运动的周期为T 22(1)()224T T T n --=2232(1)n T T n -=-解得202(123n B B n -=-)因此002(1)2(1)2123n n B B B n n --≤≤--,n =2、3……6.某回旋加速器的两个半圆金属盒处于与盒面垂直的匀强磁场中,两金属盒间存在交变电场,用其加速质子。
已知金属盒的半径为R ,磁场的磁感应强度为B ,金属盒间缝隙的加速电压为U ,质子的质量为m ,电荷量为q 。
求 (1)交变电场的频率f ;(2)质子加速完毕出射时的动能E k ; (3)质子在回旋加速器中运动的圈数n 。
【答案】(1)2Bqmπ(2)2222B q R m(3)224B qR mU【解析】 【详解】质子在磁场中做匀速圆周运动,洛伦兹力提供向心力2v Bqv m r=2rT vπ=1f T=联立可得2Bqf mπ=(2) 洛伦兹力提供向心力,当半径最大时,对应的速度最大,动能最大,最大半径为R2v Bqv m R=2k 12E mv =联立可得222k 2B q R E m=质子在磁场中每转一圈加速两次,获得能量为2Uq ,设质子在回旋加速器中运动的圈数n ,则有k 2E nUq =将222k 2B q R E m=代入可得224B qR n mU=7.在近代物理实验中,常用回旋加速器加速得到高速粒子流.回旋加速器的结构如图所示,D 1、D 2是相距很近的两个处于匀强磁场中的半圆形金属盒,D 形盒的缝隙处接交流电源,A 处的粒子源产生的带电粒子在两盒之间被电场加速.设带电粒子质量为m ,电量为q ,匀强磁场磁感应强度为B ,D 形盒的最大半径为R ,两个D 形盒之间的距离为d ,d 远小于R ,D 形盒之间所加交变电压大小为U .不计粒子的初速度及运动过程中质量的变化,求:(1)所加交变电压的周期T;(2)带电粒子离开D形盒时的动能E km;(3)带电粒子在回旋加速器磁场中运动的时间t1及在两D形盒间电场中运动的时间t2,并证明粒子在电场中运动的时间可以忽略不计.【答案】(1)(2)(3)见解析【解析】【详解】(1)带电粒子在磁场中运动半周的时间与交变电压的半个周期相等,得(2)带电粒子离开D形盒时的轨迹半径为R,由圆周运动的规律得解得:带电粒子离开D形盒时的动能(3)设带电粒子在电场中加速的次数为n,有解得:又因为带电粒子在磁场中运动的周期所以带电粒子在磁场中运动的时间解得:带电粒子在电场中的运动可看成匀加速直线运动,得v=at其中所以带电粒子在电场中运动的时间有因为d远小于R,有t2远小于t1,所以带电粒子在电场中运动的时间可以忽略.【点睛】此题关键是知道回旋加速器的工作原理,知道电场的周期等于粒子在磁场中的周期,当粒子的半径等于D型盒的半径时,粒子的速度最大,能量最大.8.1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中的运动特点,解决了粒子的加速问题.现在回旋加速器被广泛应用于科学研究和医学设备中.某型号的回旋加速器的工作原理如图甲所示,图乙为俯视图.回旋加速器的核心部分为D 形盒,D形盒装在真空容器中,整个装置放在电磁铁两极之间的磁场中,磁场可以认为是匀强磁场,且与D形盒盒面垂直.两盒间狭缝很小,带电粒子穿过的时间可以忽略不计.质子从粒子源A处进入加速电场的初速度不计,从静止开始加速到出口处所需的时间为t.已知磁场的磁感应强度为B,质子质量为m、电荷量为+q,加速器接一定频率高频交流电源,其电压为U.不考虑相对论效应和重力作用.求:(1)质子第1次经过狭缝被加速后进入D形盒运动轨道的半径r1;(2)D形盒半径为R;(3)试推理说明:质子在回旋加速器中运动时,随轨道半径r的增大,同一盒中相邻轨道半径之差是增大、减小还是不变?【答案】(1)(2)(3)减小.【解析】【分析】【详解】试题分析:(1)设质子第1次经过狭缝被加速后的速度为v1①②联立①②解得:(2)设质子从静止开始加速到出口处运动了n圈,质子在出口处的速度为v③④⑤⑥联立③④⑤⑥解得(3)(方法1)设k为同一盒子中质子运动轨道半径的序数,相邻的轨道半径分别为r k,r k+1(r k<r k+1),,在相应轨道上质子对应的速度大小分别为v k,v k+1,D1、D2之间的电压为U,由动能定理知⑦由洛伦兹力充当质子做圆周运动的向心力,知,则⑧整理得⑨相邻轨道半径r k+1,r k+2之差同理因U、q、m、B均为定值,且因为r k+2> r k,比较与得(方法2)设k为同一盒子中质子运动轨道半径的序数,相邻的轨道半径分别为r k-1、r k、r k+1,(r k-1<r k<r k+1),由及得得假设>有两边平方得结果正确,说明假设成立.所以考点:回旋加速器;带电粒子在匀强电场及匀强磁场中的运动.9.回旋加速器在核科学、核技术、核医学等高新技术领域得到了广泛应用,有力地推动了现代科学技术的发展。