直流力矩电机
•
结构上采用扁平式电枢, 可增多电枢 槽数、 元件数和换向器片数; 适当加大 电机的气隙, 采用磁性槽楔、 斜槽等措 施, 都可使力矩波动减小。
2. 机械特性和调节特性的线性度 在前面所述的直流电动机机械特性和 调节特性是在励磁磁通不变的条件下得 出的。 事实上, 与直流发电机一样, 电动机中同样也存在着电枢反应的去磁 作用, 而且它的去磁程度与电枢电流或 负载转矩有关, 它导致机械特性和调节 特性的非线性。 为了提高特性的线性度, 在设计直流力矩电动机时, 把磁路设计 成高度饱和, 并采取增大空气隙等方法, 使电枢反应的影响显著减小。
2.电枢形状对空栽转速的影响 • 已知一个极下一根导体的平 均电势 πDn e p = B p lυ = B p l 60
式中, Bp为一个极下气隙的平均磁通密度; l为导体在 磁场中的长度; v为导体运动的线速度, 或电枢圆周速 度; n为电机转速; D为电枢铁心直径。
•
如果电枢总导体数为N, 若一对 电刷之间的并联支路数为 2, 则一对电 刷所串联的导体数为N/2, 这样, 刷间 电势为 πDn (3 - 39) Ea = B p lN 120
1.3.4 直流力矩电动机性能特点 1. 力矩波动小, 低速下能稳定运行 力矩电动机重要性能指标之一是力矩 波动, 这是因为它通常运行在低速状态 或长期堵转, 力矩波动将导致运行不平 稳或不稳定。 力矩波动系数是指转子处 于不同位置时, 堵转力矩的峰值与平均 值之差相对平均值的百分数。 力矩波动 的主要原因是由于绕组元件数、 换向器 片数有限使反电势产生波动, 电枢铁心 存在齿槽引起磁场脉动, 以及换向器表 面不平使电刷与换向器之间的滑动摩擦 力矩有所变化等。
•
但是齿轮之间的间隙对提高自动控制 系统的性能指标很有害, 它会引起系统 在小范围内的振荡和降低系统的刚度。 因此, 我们希望有一种低转速、 大转矩 的电动机来直接带动被控对象。
Hale Waihona Puke •直流力矩电动机就是为满足类似 上述这种低转速、 大转矩负载的需要而 设计制造的电动机。 它能够在长期堵转 或低速运行时产生足够大的转矩, 而且 不需经过齿轮减速而直接带动负载。 它 具有反应速度快、 转矩和转速波动小、 能在很低转速下稳定运行、 机械特性和 调节特性线性度好等优点。 特别适用于 位置伺服系统和低速伺服系统中作执行 元件, 也适用于需要转矩调节、 转矩反 馈和一定张力的场合(例如在纸带的传动 中)。
• •
1.3.2 结构特点 直流力矩电动机的工作原理和普 通的直流伺服电动机相同, 只是在结构 和外形尺寸的比例上有所不同。 一般直 流伺服电动机为了减少其转动惯量, 大 部分做成细长圆柱形。 而直流力矩电动 机为了能在相同的体积和电枢电压下产 生比较大的转矩和低的转速, 一般做成 圆盘状,电枢长度和直径之比一般为 0.2 左右; 从结构合理性来考虑, 一般做成 永磁多极的。 为了减少转矩和转速的波 动, 选取较多的槽数、 换向片数和串联 导体数。
1. 电枢形状对转矩的影响 由1.2 节给出的电磁转矩公式(1 - 2), 得到 图 1 - 29(a)时的电磁转矩为 Da Ta = N a B p laia (1 - 38) 2
式中, Na为图 3 - 29(a)中电枢绕组的总导体数; Bp为一个 磁极下气隙磁通密度的平均值; la为图 1 - 29(a)中导体在磁 场中的长度, 即电枢铁心轴向长度; ia为电枢导体中的电 流; Da为图 1 - 29(a)中电枢的直径。
在理想空载时, 电动机转速为n0, 电枢电压Ua和 反电势Ea相等。 因此, 由式(1 - 39)可得
120 U a 1 n0 = π B p lN D
•
已知当电枢体积和导体直径不变的条 件下, Nl的乘积近似不变。 所以, 当电 枢电压和气隙平均磁通密度相同时, 理 想空载转速n0 和电枢铁心直径近似成反 比。 即电枢直径越大, 电动机理想空载 转速就越低。 • 从以上分析可知, 在其他条件相 同时, 如增大电动机直径, 减少其轴向 长度, 就有利于增加电动机的转矩和降 低空载转速。 这就是力矩电动机做成圆 盘状的原因。
图 1 - 29 电枢体积不变的条件下, 不同直径时的电枢形状
•
因为电枢体积的大小, 在一定程 度上反映了整个电动机的体积, 因此可 以在电枢体积不变的条件下, 比较不同 直径时所产生的转矩。 • 如果把图中电枢的直径增大 1 倍, 而保持体积不变, 此时电动机的形状则 如图 1 - 29(b)所示, 即该图中电枢直径 Db=2Da, 电枢长度lb=la/4。
•
所以, 为减小电磁时间常数, 提高力 矩电机的快速反应能力, 采用了多极结 构, 如图 1 - 28 所示。 此外, 力矩电 动机的饼式结构有利于将电动机的轴直 接套在短而粗的负载轴上, 从而大大提 高了系统的耦合刚度。
4. 峰值堵转转矩和峰值堵转电流 因为电枢磁场对主磁场的去磁作用 随电枢电流的增加而增加, 故而峰值堵 转电流是受磁钢去磁限制的最大电枢电 流。 与其相对应的堵转转矩称为峰值堵 转转矩, 它是力矩电机最大的堵转转矩。 • 需要指出, 由于电机定子上装有 永久磁钢, 所以在拆装电机时, 务必使 定子磁路处于短路状态。 即取出转子之 前, 应先用短路环封住定子, 再取出转 子, 否则, 永久磁钢将失磁。 如果使用 中发生电枢电流超过峰值堵转电流, 使 电机去磁, 并导致堵转转矩不足时, 则 必须重新充磁。
3. 响应迅速, 动态特性好 由 1.8 节可知, 决定过渡过程快慢 的两个时间常数是机电时间常数τj和电磁 时间常数τd。 虽然直流力矩电动机电枢 直径大, 转动惯量大, 但由于它的堵转 力矩很大,空载转速很低, 力矩电动机 的机电时间常数还是比较小的, 这样, 其电磁时间常数τd相对变大。 已知 τd=La/Ra, 其中电枢绕组电感La主要取 决于电枢绕组的电枢反应磁链。 可以证 明, 增加极对数可以减少电枢反应磁链。
• • 总体结构型式有分装式和内装式两种, 分装式结构包括定子、 转子和刷架三大 部件, 机壳和转轴由用户根据安装方式 自行选配; 内装式则与一般电机相同, 机壳和轴已由制造厂装配好。 •
图 1 - 28 直流力矩电动机的结构示意图
1.3.3 为什么直流力矩电动机转矩大、 转 速低 • 如上所述, 力矩电动机之所以做 成圆盘状, 是为了能在相同的体积和控 制电压下产生较大的转矩和较低的转速。 下面以图 1 - 29 所示的简单模型, 粗略 地说明外形尺寸变化对转矩和转速的影 响。
1.3 直流力矩电动机
• • 1.3.1 概述 在某些自动控制系统中, 被控对象 的运动速度相对来说是比较低的。 例如某 一种防空雷达天线的最高旋转速度为 90°/s, 这相当于转速15 r/min。 一般直 流伺服电动机的额定转速为 1500 r/min或 3000 r/min, 甚至 6000 r/min, 这时就需 要用齿轮减速后再去拖动天线旋转。
•
假定两种情况下电枢导体的电流 一样, 那末两种情况下导体的直径也一 样, 但图(b)中电枢铁心截面积增大到图 (a)的 4 倍, 所以槽面积及电枢总导体数 Nb也近似增加到图(a)的 4 倍, 即 Nb=4Na。 这样一来, 乘积 Nblb=4Na·la/4=Nala。 也就是说, 在电枢 铁心体积相同, 导体直径不变的条件下, 即使改变其铁心直径, 导体数N和导体 有效长度l的乘积仍不变。 据此, 我们可 以得到图 (b)时的电磁转矩为 Db Da Tb = B pia ( N a lb ) = B pia N a la ⋅ 2 = 2Ta 2 2