空压机控制程序设计郑丽菊摘要:介绍了我厂旧空压站四台空压机进行PLC控制系统改造的程序结构。
论述了空压机联锁跳车程序、开车程序、辅助油泵控制程序、压力(负荷)控制程序、防喘振控制程序的原理及实现方法。
关键词: 空压机 PLC 控制程序1、前言众所周知,一直以来空气压缩机的控制系统都采用专用控制器,COOPER空气压缩机的专用控制系统从QUADIII,QUAD97,QUAD2000,再到V ANTIAGE,都是单板机专用控制器,英格索兰空气压缩机亦然,采用的是MP3,CMC专用控制系统。
这些专用控制器都有两个共同的特点:1)程序保密;2)零配件价格昂贵。
给用户的维护使用带来很大的不便,维护成本很高。
是否可以采用目前应用很广泛,技术成熟,价格相对低廉很多的PLC做为空压机的控制系统呢?这个想法在很多年前便有人提出来了,但由于空压机控制有其特殊性,厂家对控制程序保密,很多用户都比较谨慎。
随着近几年,部分空压机厂家控制器采用了PLC,如三星、艾里奥利,虽然程序依然不对用户开放,用户维护起来依然不是很方便,但是已证明用PLC取代专用控制器是可行的。
那么,是否可以用PLC取代目前采用QUAD2000,CMC专用控制系统的COOPER、英格索兰空压机控制器呢?如何用PLC程序实现空压机控制,这就是本文将探讨的内容。
我厂旧空压站有4台空压机,分别独立进行控制,一台是英格索兰的,型号3CII80MX3,控制系统是CMC,另外三台是JOY空压机,型号TA60M330RRZ,控制系统为QUAD2000,系统互相无法进行通信实现集中统一监视和控制,使工艺无法实时监控空压机。
空压机控制系统为专用控制器,价格昂贵,使维修费用高,且都为淘汰产品,厂家已不生产,无备件来源。
同时控制系统已使用多年出现老化,已出现多次不知原因的故障现象和停车事故。
控制系统无历史记忆功能,难以进行事故分析。
以致多次出现事故停车后,找不到真正原因。
2010年总公司立项作为隐患整改项目,2011年4月完成改造。
成功改造的关键就是空压机控制程序的设计。
2控制系统结构图1是控制系统的结构图。
由三部分组成:1)检测仪表;2)PLC控制系统;3)执行元件。
核心是PLC控制系统,主要由五个程序构成。
图1 控制系统结构图3、程序设计本空压机的控制程序设计分成几块,实现不同的功能,主要包括:1)联锁跳车程序;2)开车程序;3)辅助油泵控制程序4)压力(负荷)控制程序;5)防喘振控制程序3.1联锁跳车程序设计联锁停车程序,是保护机组安全运行的程序,当机组运行参数达到危险值时,安全停机,避免机组设备损坏的程序。
联锁停机参数有振动,温度,润滑油温度和压力,电机轴承温度等。
联锁逻辑和参数说明如下:PLC 控制系统 执行元件 检测仪表图2 联锁逻辑图1)一级振动:正常运行时设定大于2.0跳车,一般电机启动时振动值会比较大,为保证顺利启动,在电机启动期间(25S内)跳车值为该设定值乘以二。
2)二级振动:根据机组性能设定一个限制值,正常运行时设定大于2.0跳车,一般电机启动时振动值会比较大,为保证顺利启动,在电机启动期间(25S内)跳车值为该设定值乘以二。
3)三级振动:根据机组性能设定一个限制值,正常运行时设定大于2.0跳车,一般电机启动时振动值会比较大,为保证顺利启动,在电机启动期间(25S内)跳车值为该设定值乘以二。
4)润滑油压力:保证润滑油压力大于要求设定值,当由于油泵故障或油路堵塞导致压力低于设定值时将跳机。
5)二级进气温度;二级冷却器冷却效果不佳时温度会升高,影响压缩机工作效率。
一般设定大于60度左右时跳机。
6)三级进气温度;三级冷却器冷却效果不佳时温度会升高,影响压缩机工作效率。
一般设定大于60度左右时跳机。
7)主电机故障:启动命令发出后25秒,如果电机还运行不起来则判断为电机故障,发出停车命令将启动回路断开。
8)润滑油温度;为保证润滑性能,润滑油温一般控制在21度到46度之间,超过这个范围则跳车。
9)主油泵故障:主电机启动一分钟后,如果润滑油压力达不到停辅助油泵的设定压力,则判断为主油泵故障需要停机。
10)电机轴承温度:避免电机轴承过热11)电机线圈温度:避免电机过热烧坏电机。
3.2 开车程序开车程序是判断机组状态参数正常,阀位处于正确位置,允许机组启动,并且启动后将阀位开到安全位置的程序。
图3 开车逻辑图开车逻辑说明:机组不存在联锁条件,旁通阀在启动位置(全开),入口阀在启动位置(全关),润滑油压大于120KPA,润滑油温大于22℃,入口阀、旁通阀都处于自动状态,机组满足以上条件允许启动。
3.3辅助油泵控制程序辅助油泵有自动/手动控制模式,当空压机启动时,辅助油泵自动转为自动方式,当空压机启动一分中内辅助油泵必须停止,否则判断为主油泵故障,机组联锁停机;主电机停止后辅助油泵马上启动。
3.4 压力(负荷)控制程序1)控制原理空压机负荷控制程序是空压机控制程序设计的核心。
具有自动双模式和恒压两种控制方式。
在自动双模式控制方式下,压缩机的排气压力被设定在某个系统所需要的压力值上,进口调节导叶在压缩机可调范围内能调节进口气量,使压缩机保持恒定的排气压力。
当到达喘振控制点后,进口导叶停止关小,使压缩机的排气压力上升到卸载压力设定点,此时压缩机将会卸载(进口调节导叶关闭,旁通阀打开)。
压缩机将一直保持卸载状态直到排气压力低于设定的最小压力值。
然后压缩机将重新加载至满流量运行,又开始一个新的循环。
在恒压控制方式下,压缩机的排气压力被设定在某个系统所需要的压力值上,进口调节导叶在压缩机可调范围内能调节进口气量,使压缩机保持恒定的排气压力。
当到达喘振控制点后,进口导叶停止关小,压缩机旁通阀开始打开,调节旁通阀的开度使排气压力仍保持在恒定值上。
压缩机将始终通过对进口调节导叶和旁通阀的无级调节保持恒定的排气压力。
2)程序设计。
负荷控制程序包括空载、加载、压力调节、卸载等阶段的控制程序。
通过控制入口阀和出口阀的开度达到控制目标。
图3就是在各阶段进、出口阀的动作过程。
控制逻辑说明如下:空载:空压机启动后,入口阀自动开到13%,如果没有加载,则暂停。
放空阀全开。
加载:选择加载后,入口阀以最小电流设定值为加载目标;达到该值后,入口阀暂停;旁通阀开始以设定压力为目标开始关闭。
旁通阀全关后,进入压力调节阶段。
压力调节:旁通阀全关后,入口阀再继续以设定压力为目标进行自动调节,同时入口阀开度受最大电流限制;如果压力过高,则入口阀开度关闭到最小电流就不再继续关小,而是通过旁通阀进行调节;如果压力升高太多,达到压力保护设定值,则放空阀增加15%开度。
卸载:卸载时,旁通阀快速打开放空,然后入口阀再逐渐关闭到13%。
空压机一般设计两种工作模式:恒压模式;自动双式模式。
两种模式不同之处就是,自动双式模式下,如果空压机处于空载运行,系统压力下降到再加载设定值一段时间,空压机会自动重新加载。
恒压模式则不会自动重新加载。
入口阀旁通阀图3 各控制阶段入口阀放空阀动作示意图上图是各控制阶段入口阀放空阀动作过程示意图。
各控制阶段说明如下:T0:空压机启动。
T0~T1:空压机空载阶段。
T1:开始加载。
T1~T2:入口阀以最小电流为目标加载。
T2~T3:放空阀以设定压力为目标加载。
T3~T4:压力调节阶段。
T4~`T5:放空阀参与压力调节。
T5:开始卸载。
3.5喘振控制程序。
1)控制原理喘振是离心式压缩机的一种特有的现象。
压缩机在工作过程中,当进入叶轮的气体流量小于机组该工况下的最小流量(即喘振流量)时,管网气体会倒流至压缩机,当压缩机的出口压力大于管网压力时,压缩机又开始排出气体,气流会在系统中产生周期性的振荡,具体体现在机组连同它的外围管道一起会作周期性大幅度的振动,这种现象工程上称之为喘振。
离心式压缩机发生喘振时,典型现象有:(1)压缩机的出口压力最初先升高,继而急剧下降,并呈周期性大幅波动。
(2)压缩机的流量急剧下降,并大幅波动,严重时甚至出现空气倒灌至吸气管道。
(3)拖动压缩机的电机的电流和功率表指示出现不稳定,大幅波动。
(4)机器产生强烈的振动,同时发生异常的气体噪声。
防喘振控制是一个重要的安全控制,防喘振系统是通过调节入口导叶开度和放空阀(防喘振阀)开度来控制空压机的流量和出口压力,目的是使空压机工作点始终处在限定的范围内,而不进入喘振区,以确保机组的安全运行。
一般来说空压机防喘控制的对象是放空阀(防喘振阀),一旦出口压力过高,空压机接近喘振区或发生喘振时,该阀自动打开。
空压机的防喘振曲线是在现场实测出来的,考虑到系统的动态特性、喘振发生得非常快,所以对控制系统、检测系统的扫描周期有很高要求,尤其是大型的空压机。
空压机的喘振曲线是机组实际测试得到的。
下图是典型的空压机性能曲线。
图4典型的双自动控制性能曲线图5典型的恒压控制性能曲线2)程序设计。
引起空压机喘振的原因有很多,但基本分为两类。
一是入口流量不足导致机组克服不了系统阻力;二是出口压力太高,一般是由于空气用量突然减少,导致出口压力上升,造成憋压。
所以防喘振控制程序是针对这两种因数设计的。
针对第一个原因采用限制入口阀开度的方法,防止过分节流。
针对第二种因素采用及时调节放空阀开度的方法。
程序设计原理见图7。
空压机防喘振控制程序的核心是负荷调节模块,设计了三个调节功能,在不同的工况采用不同的调节功能。
1)入口阀调压功能块。
在正常工况下起做用,即电流没接近最小电流设定值(最小电流是空压机性能决定的)。
在此工况下,负荷调节模块根据给定的系统压力进行调节,通过调节入口阀的开度使系统压力稳定在设定值。
2)放空阀调压功能块。
在电流接近最小电流设定值起作用,这种情况是在系统压力持续升高,入口阀持续关小,一直到接近最小电流设定值(2安的余量),此时开始进入放空阀调压模式。
调节过程是:系统压力增大时,放空阀打开,反之放空阀开度减小,如果压力上升太快,大于压力保护值,则直接将放空阀开度增大15%。
这样设计的理由是:在接近最小电流时,如果入口阀在继续关小,将导致入口流量不足,引起喘振;而在压力一升高就采取放空阀调压不利于节能。
所以这样的程序设计兼顾了机组安全和节能。
3)电流防喘振调节功能块。
在电流接近最小电流设定值起作用,这种情况是在系统压力持续升高,入口阀持续关小,一直到接近最小电流设定值(2安的余量)。
这个时候进入电流调节模式,以前一个电流测量采样值做为调节器设定值,即机组电流下降时增加入口阀开度,电流增加时减少入口阀开度。
直到电流离开这个区域。
4)喘振判断及保护程序。
虽然系统设计了防喘振控制程序,但是当干扰太大,调节系统反应不及,空压机还是会进入喘振区,此时控制系统必须及时反应,保证机组安全。
一般设定系统压降达到34.5KPa/300ms时,判断为机组进入喘振区,防空阀打开,入口阀关闭,机组自动卸载。