当前位置:文档之家› J1939协议通信原理

J1939协议通信原理

CAN总线的特点及J1939协议通信原理、内

容和应用

众多国际知名汽车公司早在20世纪80年代就积极致力于汽车网络技术的研究及应用。迄今已有多种网络标准,如专门用于货车和客车上的SAE的J1939、德国大众的ABUS、博世的CAN、美国商用机器的AutoCAN、ISO的VAN、马自达的PALMNET等。

在我国的轿车中已基本具有电子控制和网络功能,排放和其他指标达到了一定的要求。但货车和客车在这方面却远未能满足排放法规的要求。计划到2006年,北京地区的货车和客车的排放要满足欧Ⅲ标准。因此,为了满足日益严格的排放法规,载货车和客车中也必须引入计算机及控制技术。采用控制器局域网和国际公认标准协议J1939来搭建网络,并完成数据传输,以实现汽车内部电子单元的网络化是一种迫切的需要也是必然的发展趋势。

1 CAN总线特点及其发展

控制器局域网络(CAN)是德国Robert bosch公司在20世纪80年代初为汽车业开发的一种串行数据通信总线。CAN是一种很高保密性,有效支持分布式控制或实时控制的串行通信网络。CAN的应用范围遍及从高速网络到低成本底多线路网络。在自动化电子领域、发动机控制部件、传感器、抗滑系统等应用中,CAN的位速率可高达1Mbps。同时,它可以廉价地用于交通运载工具电气系统中,如灯光聚束、电气窗口等,可以替代所需要的硬件连接。它采用线性总线结构,每个子系统对总线有相同的权利,即为多主工作方式。CAN网络上任意一个节点可在任何时候向网络上的其他节点发送信息而不分主从。网络上的节点可分为不通优先级,满足不同的实时要求。采用非破坏性总线裁决技术,当两个节点(即子系统)同时向网络上传递信息时,优先级低的停止数据发送,而优先级高的节点可不受影响地继续传送数据。具有点对点、一点对多点及全局广播接收传送数据的功能。

随着CAN在各种领域的应用和推广,对其通信格式的标准化提出了要求。1991年9月Philips Semiconductors制定并发布了CAN技术规范(Versio 2.0)。该技术包括A和B两部分。2.OA给出了CAN报文标准格式,而2.OB给出了标准的和扩展的两种格式。1993年11月ISO颁布了道路交通运输工具-数据信息交换-高速通信局域网(CAN)国际标准ISO11898,为控制局域网的标准化和规范化铺平了道路。美国的汽车工程学会SAE于2000年提出的J1939,成为货车和客车中控制器局域网的通用标准。

2.J1939协议通信原理及内容

(1)J1939与CAN

J1939是一种支持闭环控制的在多个ECU之间高速通信的网络协议冈。主要运用于载货车和客车上。它是以CAN2.0为网络核心。表1介绍了CAN2.0的标准和扩展格式,及J1939协议所定义的格式。表2则给出了J1939年的一个协议报文单元的具体格式。可以看出,J1939标识符包括:PRIORTY(优先权位);R(保留位);DP(数据页位);PDU FORMAAT(协议数据单元);PDU SPECIFIC(扩展单元)和SOURCE ADDRESS(源地址)。而报文单元还包括64位的数据场。

表1 CAN2.0的标准和扩展格式及J1939协议所定义的格式

表2 J1939协议报文单元的具体格式

(2)数据传转协议

J1939通信中的核心是负责数据传输的传输协议。它的功能分为两部分:

(1)数据的拆分打包和重组。一个J1939的报文单元只有8个字节的数据场。因此如果所要发送的数据超过了8字节,就应该分成几个小的数据包分批发送。数据场的第一个字节从1开始作为报文的序号,后7个字节用来存放数据。所以可以发送255×7=1785个字节的数据。报文被接收以后按序号重新组合成原来的数据。

(2)连接管理。主要对节点之间连接的建立和关闭,数据的传送进行管理。其中定义了5种帧结构:发送请求帧、发送清除帧、结束应答帧、连接失败帧以及用来全局接收的广播帧。节点之间的连接通过一个节点向目的地址发送一个发送请求帧而建立。在接收发送请求帧以后,节点如果有足够的空间来接收数据并且数据有效,则发送一个发送清除帧,开始数据的传送。如果存储空间不够

或者数据无效等原因,节点需要拒绝连接,则发送连接失败帧,连接关闭。如果数据接收全部完成。则节点发送一个结束应答帧,连接关闭。

(3)J1939的参数格式

J1939中还定义了参数的具体格式,如标识符、优先级、数据长度、参数的范围等。参数又划分为状态参数和测量参数。状态参数表示具有多态信号的某一种状态,如发动机刹车使能/禁能、巡航控制激活/关闭,扭矩/速度控制超载模式、错误代码等。而测量参数则表示所接收到的信号的值的具体大小,如缸内爆发压力、最大巡航速度、发动机转速等。

3.J1939协议的应用

(1)J1939应用于网络构建

J1939网络层中定义了如何构建网络及连接的功能。网络层的功能包括数据的过滤、重新打包和转发。分别由以下各部分实现。

a.中继器。可以增强数据信号,使数据传输更远的距离。

b.网桥。数据的转发和过滤。它可以把网络拆解成网络分支、分割网络数据流,隔离分支中发生的故障,这样就可以减少每个网络分支的数据信息流量而使每个网络更有效,提高整个网络效率。

c.路由。可以使网络段具有独立的地址空间不同的数据传输率和媒介。

d.网关。可以在不同的协议和数据设置的网段之间传送数据。图1为典型的汽车网络连接。

(2)J1939应用于故障诊断

J1939包括在线故障诊断功能,由诊断应用层定义。诊断应用层面向以下几方面。

a.安全。在数据链路层上定义一个安全的框架,使得符合工业标准的开发工具执行必要的诊断任务。包括获取诊断信息,获取节点配置信息,标定控制模式。但对非开放型的数据加密。

b.连接。建立J1939网络节点与开发工具之间的连接。连接器的设计也必须符合J1939协议。

c.诊断状态数据支持。提供一系列的数据格式。包括读取出错数据、清除错误数据、监测通信参数、获取节点的配置以及其他的一些信息。

d.诊断测试支持。可以使开发工具把各种控制节点放到具体的测试模式中以正确设计子网体系。诊断工具通过连接器与其他节点进行通信以获取诊断数据。

因此所有的控制节点都应该具备以下功能:读取诊断故障代码、清除诊断故障代码、获取实时信息。而诊断故障代码记载了出错的参数及所在的节点等主要信息。

驾驶室监视仪

网桥

传动系统

发动机系统

制动系统

制动器

路由

拖车机构

网桥

到下一拖车系统

250 K

拖车子网

轴/悬挂系统

制动

照明

牵引动力总线

图1典型汽车网络连接

4.节点设计及数据通信

最小化节点的主控制芯片采用51系列的单片机,控制器采用PHILIPS公司的SJA1000,控制器接口采用82c250。

为了构建CAN总线局域网络,采用了研华公司生产的双端口CAAN控制卡PCL-841,每块PCL-841卡集成了两块PHILIPS的SJA1000控制器和82c250控制器接口。这样两块控制卡就有四个端□,相当于四个独立的节点,用数据线连接起来,就组成了基本的CAN局域网。如图2所示。

节点1

节点2

节点3

节点4

PC机

CAN总线

图2 CAN局域网

软件的编写主要包括对寄存器的配置、硬件初始化、中断调用、数据通信几大模块。中断调用中包括数据中的中断接收、中断发送,以及错误处理、报警等模块。通信模块又分为数据的发送、接收、请求等。

综上所述,J1939通信协议解决了如下问题。

(I)优先权问题。如自动换挡要求减油门,巡航控制同时要求增油,而ASR 则要求减油门以维持驱动轴的低扭矩。根据重要程度,则应确定换挡优先,协议能定义各个子系统的优先权顺序。

(2)灵活性问题。因为各个子系统都是不同类型的控制系统,网络应具备将各个子系统有机地融合在一起的能力。

(3)可扩展性。即需要增加新的子系统时,不需要对基本系统作修改。

(4)独立性。每个子系统都可以独立工作,某个子系统出现故障时并不影响其他系统的正工作。

(5)为满足不同控制系统的要求,应具有高的数据传输速率带宽,具有通用的故障诊断接口诊断协议。

(6)车辆状态共享。如发动机转速、车速、轮速等数据必须各子系统共享,数据的传输及刷新时间取决于各个子系统的特性,并由此决定优先权

汽车空调的组成与原理

汽车空调的组成与原理 一、汽车空调的工作原理 压缩机运转时,将蒸发器产生的低温低压制冷剂蒸气吸入并压缩后,在高温高压(约700C,1471KPa)的状况下排出。这些气态蒸气流入冷凝器,并在此受到散热和冷却风扇的作用强制冷却到500C 左右。这时,制冷剂由气态变为液态。被液化了的制冷剂,进入干燥器,除去了水和杂质后,流入膨胀阀。高压的液态制冷剂从膨胀阀的小空流出,变为低压雾状后流入蒸发器。雾状制冷剂在蒸发器吸热汽化变为气态制冷剂,从而使蒸发器表面温度下降。从送风机出来的空气,不断流过蒸发器表面,被冷却后送进车厢降温。气态制冷剂通过蒸发器后又重新被压缩机吸入,这样反复循环即可达到制冷目的。 二、汽车空调主要功能包括以下4大部分: 制冷、制热、通风、除湿 制冷系统原理:汽车空调的压缩机依靠汽车发动机的动力提供汽车在怠速状态下打开空调制冷怠速会明显增大油耗也会相应的增加 油耗增加的大小与环境温度有最直接的关系环境温度高制冷剂膨胀 的压力大发动机驱动空调的消耗也相应加大环境温度低油耗相应减少。 制热系统原理:汽车空调制热与压缩机没有丝毫关系制热的热源不是空调本身获取的是由汽车的散热水箱(中控台下面的暖风机总成

的副水箱)提供早晨在热车前空调吹出来的是冷风待热车后空调热风源源不断的送出来制热本身基本没有能量消耗是利用汽车的余热完成的.但在冬季,为了提升水温,加大喷油量,也使耗油量增加。但是只是在启动初期,等发动机运转正常,就是利用发动机的散热来供暖了。(而有的柴油车由于水温上升慢,为了一发动车就能享受到暖风,所以在暖风机里面加有电热丝)。 通风:通风分为循环和外循环使用循环时车空气基本不与外界交流使用外循环时位于挡风玻璃下的新风口会将外界的空气源源不断的送进来以保持车空气的清新. 除湿:空调制冷的过程就是除湿的过程从制冷时产生的大量冷凝水就可以看出来了在湿度较大的阴雨天气或是温差太大的时候车的玻璃上容易起雾打开空调驱雾就是一个除湿的过程。 三、汽车空调的组成 汽车空调一般主要由压缩机、电控离合器、冷凝器、蒸发器、膨胀阀、贮液干燥器、管道、冷凝风扇等组成。汽车空调分高压管路和低压管路。 1.电磁离合器 在非独立式汽车空调制冷系统中,压缩机是由汽车主发动机驱动的。在需要时接通或切断发动机与压缩机之间的动力传递。另外,当压缩机过载时,它还能起到一定的保护作用。因此,通过控制电磁离合器的结合与分离,就可接通与断开压缩机。当空调开关接通

《数字通信原理(第三版)》教材课后习题答案

《数字通信原理》习题解答 第1章 概述 1-1 模拟信号和数字信号的特点分别是什么? 答:模拟信号的特点是幅度连续;数字信号的特点幅度离散。 1-2 数字通信系统的构成模型中信源编码和信源解码的作用是什么?画出话音信号的基带传输系统模型。 答:信源编码的作用把模拟信号变换成数字信号,即完成模/数变换的任务。 信源解码的作用把数字信号还原为模拟信号,即完成数/模变换的任务。 话音信号的基带传输系统模型为 1-3 数字通信的特点有哪些? 答:数字通信的特点是: (1)抗干扰性强,无噪声积累; (2)便于加密处理; (3)采用时分复用实现多路通信; (4)设备便于集成化、微型化; (5)占用信道频带较宽。 1-4 为什么说数字通信的抗干扰性强,无噪声积累? 答:对于数字通信,由于数字信号的幅值为有限的离散值(通常取二个幅值),在传输过程中受到噪声干扰,当信噪比还没有恶化到一定程度时,即在适当的距离,采用再生的方法,再生成已消除噪声干扰的原发送信号,所以说数字通信的抗干扰性强,无噪声积累。 1-5 设数字信号码元时间长度为1s μ,如采用四电平传输,求信息传输速率及符号速率。 答:符号速率为 Bd N 661010 11===-码元时间 信息传输速率为 s Mbit s bit M N R /2/1024log 10log 6 262=?=?== 1-6 接上例,若传输过程中2秒误1个比特,求误码率。

答:76105.210 221)()(-?=??==N n P e 传输总码元发生误码个数 1-7 假设数字通信系统的频带宽度为kHz 1024,可传输s kbit /2048的比特率,试问其频带利用率为多少Hz s bit //? 答:频带利用率为 Hz s bit Hz s bit //2101024102048)//3 3 =??==(频带宽度信息传输速率η 1-8数字通信技术的发展趋势是什么? 答:数字通信技术目前正向着以下几个方向发展:小型化、智能化,数字处理技术的开发应用,用户数字化和高速大容量等。 第2章 数字终端编码技术 ——语声信号数字化 2-1 语声信号的编码可分为哪几种? 答:语声信号的编码可分为波形编码(主要包括PCM 、ADPCM 等)、参量编码和混合编码(如子带编码)三大类型。 2-2 PCM 通信系统中A /D 变换、D /A 变换分别经过哪几步? 答:PCM 通信系统中A /D 变换包括抽样、量化、编码三步; D /A 变换包括解码和低通两部分。 2-3 某模拟信号频谱如题图2-1所示,(1)求满足抽样定理时的抽样频率S f 并画出抽样信号的频谱(设M S f f 2=)。(2)若,8kHz f S =画出抽样信号的频谱,并说明此频谱出现什么现象? 题图2-1

CAN总线的特点及J1939协议通信原理

CAN总线的特点及J1939协议通信原理、内 容和应用 众多国际知名汽车公司早在20世纪80年代就积极致力于汽车网络技术的研究及应用。迄今已有多种网络标准,如专门用于货车和客车上的SAE的 J1939、德国大众的ABUS、博世的CAN、美国商用机器的AutoCAN、ISO的VAN、马自达的PALMNET等。 在我国的轿车中已基本具有电子控制和网络功能,排放和其他指标达到了一定的要求。但货车和客车在这方面却远未能满足排放法规的要求。计划到2006年,北京地区的货车和客车的排放要满足欧Ⅲ标准。因此,为了满足日益严格的排放法规,载货车和客车中也必须引入计算机及控制技术。采用控制器局域网和国际公认标准协议J1939来搭建网络,并完成数据传输,以实现汽车内部电子单元的网络化是一种迫切的需要也是必然的发展趋势。 1 CAN总线特点及其发展 控制器局域网络(CAN)是德国Robert bosch公司在20世纪80年代初为汽车业开发的一种串行数据通信总线。CAN是一种很高保密性,有效支持分布式控制或实时控制的串行通信网络。CAN的应用范围遍及从高速网络到低成本底多线路网络。在自动化电子领域、发动机控制部件、传感器、抗滑系统等应用中,CAN的位速率可高达1Mbps。同时,它可以廉价地用于交通运载工具电气系统中,如灯光聚束、电气窗口等,可以替代所需要的硬件连接。它采用线性总线结构,每个子系统对总线有相同的权利,即为多主工作方式。CAN网络上任意一个节点可在任何时候向网络上的其他节点发送信息而不分主从。网络上的节点可分为不通优先级,满足不同的实时要求。采用非破坏性总线裁决技术,当两个节点(即子系统)同时向网络上传递信息时,优先级低的停止数据发送,而优先级高的节点可不受影响地继续传送数据。具有点对点、一点对多点及全局广播接收传送数据的功能。 随着CAN在各种领域的应用和推广,对其通信格式的标准化提出了要求。1991年9月Philips Semiconductors制定并发布了CAN技术规范(Versio 2.0)。该技术包括A和B两部分。2.OA给出了CAN报文标准格式,而2.OB给出了标准的和扩展的两种格式。1993年11月ISO颁布了道路交通运输工具-数据信息交换-高速通信局域网(CAN)国际标准ISO11898,为控制局域网的标准化和规范化铺平了道路。美国的汽车工程学会SAE于2000年提出的J1939,成为货车和客车中控制器局域网的通用标准。 2.J1939协议通信原理及内容 (1)J1939与CAN

电动汽车通讯协议 (1)

文件编号:T K C/J S(S)-E V3 3 文件版本号: 0/A版 安徽天康特种车辆装备有限公司 纯电动专用车辆通讯协议 编制: 审核: 批准: 发布日期:2014年12月22日实施日期:2014年12月22日 安徽天康特种车辆装备有限公司

纯电动专用车辆通讯协议 协议参考SAE J1939,,PEV-CANBUS等。 终端电阻说明:组合仪表与BMS配终端电阻(120Ω),其它零部件不带终电阻。 总线通信速率:250KBPS 1.网络拓扑结构说明 电动汽车网络采用双CAN互连结构如下图。蓄电池管理系统(BMS)采用三路CAN入网,车载充电机系统通过CAN2入网。

2.网络信号数据格式定义 电动客车网络信号数据格式遵守下表,双行定义遵循首行;电动汽车网络信号数据格式遵守下表,双行定义遵循第二行。 3.数据链路层应遵循的原则 数据链路层的规定主要参考和J1939的相关规定。 使用CAN扩展帧的29位标识符并进行了重新定义,以下为29标识符的分配表:

其中,优先级为3位,可以有8个优先级;R一般固定为0;DP现固定为0;8位的PF为报文的代码;8位的PS为目标地址或组扩展;8位的SA为发送此报文的源地址; 4.协议帧定义 下表是电池管理系统可能用到的ECU节点名称和分配的地址。 5. 电池管理系统相关协议

电池管理系统CAN2与电机控制器BMSC1_0: (ID: 0x1800D0F4) BMSC1_1: (ID: 0x1801D0F4)

Status_Flag1: 注:逻辑1表示事件为真;逻辑0表示事件为假

sae,j1939协议下载

编号:_______________本资料为word版本,可以直接编辑和打印,感谢您的下载 sae,j1939协议下载 甲方:___________________ 乙方:___________________ 日期:___________________

sae,j1939协议下载 篇一:saej1939 协议 saej1939协议_综述(转载) 发表于20xx/10/2611:16:06 saej1939协议是由美国汽车工程师协会一一卡车和公 共汽车电气电子委员会下的卡车和公共汽车控制和通讯网 络分委员会制定的高层can网络通讯协议。它主要用于为重型道路车辆上电子部件间的通讯提供标准的体系结构[1]。1saej1939协议构成文件 saej1939协议包括如下几部分内容: saej1939-11物理层,250kbits/s ,屏蔽双绞线 saej1939-13物理层,离线诊断连接器 saej1939-15简化的物理层,250kbits/s ,非屏蔽双绞 线 saej1939-21 数据链路层 saej1939-31 网络层 saej1939-71 车辆应用层 saej1939-73应用层-诊断 saej1939-81j1939 网络管理协议

2各层协议的功能 2.1物理层 saej1939的物理层规范包含saej1939-11 (物理层, 250kbits/s ,屏蔽双绞线)、saej1939-15 (简化的物理层, 250kbits/s ,非屏蔽双绞线)和saej1939-13 (物理层,离 线诊断连接器)三部分。其中saej1939-11 和saej1939-15 给出了物理层为屏蔽双绞线和非屏蔽双绞线时的网络物理 描述、功能描述、电气规范、兼容性测试、总线错误讨论。 而saej1939-13 (物理层,离线诊断连接器)则定义了离线 诊断连接器的通用需求、性能需求和物理需求。 2.2数据链路层 saej1939的数据链路层在物理层之上提供了可靠的数 据传输功能。通过数据链路层的组织,发送的can数据帧具 有必需的同步、顺序控制、错误控制和流控制等功能。其中, 流控制是通过一致的信息帧格式完成[2]。 数据链路层的功能通过命令、请求、广播/响应、应答、 组功能和传输协议来实现。其中传输协议用于长度大于8个 字节的参数组(pgn)的收发。传输协议涉及报文的拆装和 重组,通讯方式乂分为广播和点对点会话,对传输过程还定义了超时监测和错误处理,是数据链路层最复杂的部分。 2.3网络层

saej1939协议(中文)

竭诚为您提供优质文档/双击可除saej1939协议(中文) 篇一:saej1939协议 saej1939协议_综述(转载) 发表于20xx/10/2611:16:06 saej1939协议是由美国汽车工程师协会——卡车和公共汽车电气电子委员会下的卡车和公共汽车控制和通讯网络分委员会制定的高层can网络通讯协议。它主要用于为重型道路车辆上电子部件间的通讯提供标准的体系结构[1]。1saej1939协议构成文件 saej1939协议包括如下几部分内容: saej1939-11物理层,250kbits/s,屏蔽双绞线 saej1939-13物理层,离线诊断连接器 saej1939-15简化的物理层,250kbits/s,非屏蔽双绞线 saej1939-21数据链路层 saej1939-31网络层 saej1939-71车辆应用层 saej1939-73应用层-诊断

saej1939-81j1939网络管理协议 ----------------------------------------------------------------------------------- 2各层协议的功能 2.1物理层 saej1939的物理层规范包含saej1939-11(物理层,250kbits/s,屏蔽双绞线)、saej1939-15(简化的物理层,250kbits/s,非屏蔽双绞线)和saej1939-13(物理层,离线诊断连接器)三部分。其中saej1939-11和saej1939-15给出了物理层为屏蔽双绞线和非屏蔽双绞线时的网络物理 描述、功能描述、电气规范、兼容性测试、总线错误讨论。而saej1939-13(物理层,离线诊断连接器)则定义了离线诊断连接器的通用需求、性能需求和物理需求。 2.2数据链路层 saej1939的数据链路层在物理层之上提供 了可靠的数据传输功能。通过数据链路层的组织,发送的can 数据帧具有必需的同步、顺序控制、错误控制和流控制等功能。其中,流控制是通过一致的信息帧格式完成[2]。 数据链路层的功能通过命令、请求、广播/响应、应答、组功能和传输协议来实现。其中传输协议用于长度大于8个字节的参数组(pgn)的收发。传输协议涉及报文的拆装和

J1939协议简介

J1939协议简介 缩写 ACK Acknowledgment:应答 BAM Broadcast Announce Message:广播通知消息 CAN ontroller Area Network:控制器局域网 CRC Cyclic Redundancy Check:循环冗余校验 CTS Clear-To-Send:清除发送 DA Destination Address:目标地址 DLC Data Length Code:数据长度代码 DP Data Page:数据页 EOF End of Frame:框架结束或帧结束 ID Identifier:标志符 IDE Identifier Extension Bit:标志符扩展位 LLC Logical Link Control:逻辑连接控制 LSB Least Significant Byte or Least Significant Bit:最小有意义位或字节 MAC Medium Access Control:媒体通道控制 MF Manufacturer:制造商 MSB Most Significant Byte or Most Significant Bit:最大有意义位或字节 NA not Allowed:不应答 NACK Negative-Acknowledgment:错误应答 P Priority:优先级 PDU Protocol Data Unit:协议数据单元 PF PDU Format:协议数据单元格式 PGN Parameter Group Number:参数组代码 PS PDU Specific:协议数据单元细节 GE Group Extension:组扩展 DA Destination Address:目标单元地址 R Reserved:保留 RTR Remote Transmission Request:远程传输请求 RTS Request-To-Send:发送请求 SA Source Address:原地址 SOF Start of Frame:帧开始 SRR Substitute Remote Request:替代远程请求 TP Transport Protocol:传送协议 T h Hold Time:保持时间 T r Response Time:响应时间 un Undefined:没有定义 CAN2.0B包含两种格式的说明:标准格式和扩展格式。SAE J1939必须使用扩展格式。在CAN网络上也可以有标准格式 图1:标准格式

电动汽车通讯协议

文件编号: TKC/JS(S)-EV33 文件版本号: 0/A版 安徽天康特种车辆装备有限公司 纯电动专用车辆通讯协议(VER1.2) 编制: 审核: 批准: 发布日期:2014年12月22日实施日期:2014年12月22日 安徽天康特种车辆装备有限公司

纯电动专用车辆通讯协议(VER1.2) 协议参考SAE J1939,CAN2.0B,PEV-CANBUS20051114等。 终端电阻说明:组合仪表与BMS配终端电阻(120Ω),其它零部件不带终电阻。 总线通信速率:250KBPS 1.网络拓扑结构说明 电动汽车网络采用双CAN互连结构如下图。蓄电池管理系统(BMS)采用三路CAN入网,车载充电机系统通过CAN2入网。 从板1从板2高压板诊断显示器 C A N BM S主控SA=243(F3) =244(F4) 电机控制器SA=208(EF)组合仪表 SA=40(28) 车载充电机 SA=229(E5) C A N2 地面充电机 或充电站 SA=230(E6) C A N1

2.网络信号数据格式定义 电动客车网络信号数据格式遵守下表,双行定义遵循首行;电动汽车网络信号数据格式遵守下表,双行定义遵循第二行。 3.数据链路层应遵循的原则 数据链路层的规定主要参考CAN2.0B和J1939的相关规定。 使用CAN扩展帧的29位标识符并进行了重新定义,以下为29标识符的分配表:

其中,优先级为3位,可以有8个优先级;R一般固定为0;DP现固定为0;8位的PF为报文的代码;8位的PS为目标地址或组扩展;8位的SA为发送此报文的源地址; 4.协议帧定义 下表是电池管理系统可能用到的ECU节点名称和分配的地址。

J1939协议

CAN总线的特点及J1939协议通信原理、内容和应用 众多国际知名汽车公司早在20世纪80年代就积极致力于汽车网络技术的研究及应用。迄今已有多种网络标准,如专门用于货车和客车上的SAE的J1939、德国大众的ABUS、博世的CAN、美国商用机器的AutoCAN、ISO的VAN、马自达的PALMNET等。 在我国的轿车中已基本具有电子控制和网络功能,排放和其他指标达到了一定的要求。但货车和客车在这方面却远未能满足排放法规的要求。计划到2006年,北京地区的货车和客车的排放要满足欧Ⅲ标准。因此,为了满足日益严格的排放法规,载货车和客车中也必须引入计算机及控制技术。采用控制器局域网和国际公认标准协议J1939来搭建网络,并完成数据传输,以实现汽车内部电子单元的网络化是一种迫切的需要也是必然的发展趋势。 1 CAN总线特点及其发展 控制器局域网络(CAN)是德国Robert bosch公司在20世纪80年代初为汽车业开发的一种串行数据通信总线。CAN是一种很高保密性,有效支持分布式控制或实时控制的串行通信网络。CAN的应用范围遍及从高速网络到低成本底多线路网络。在自动化电子领域、发动机控制部件、传感器、抗滑系统等应用中,CAN的位速率可高达1Mbps。同时,它可以廉价地用于交通运载工具电气系统中,如灯光聚束、电气窗口等,可以替代所需要的硬件连接。它采用线性总线结构,每个子系统对总线有相同的权利,即为多主工作方式。CAN网络上任意一个节点可在任何时候向网络上的其他节点发送信息而不分主从。网络上的节点可分为不通优先级,满足不同的实时要求。采用非破坏性总线裁决技术,当两个节点(即子系统)同时向网络上传递信息时,优先级低的停止数据发送,而优先级高的节点可不受影响地继续传送数据。具有点对点、一点对多点及全局广播接收传送数据的功能。 随着CAN在各种领域的应用和推广,对其通信格式的标准化提出了要求。1991年9月Philips Semiconductors制定并发布了CAN 技术规范(Versio 2.0)。该技术包括A和B两部分。2.OA给出了CAN报文标准格式,而2.OB给出了标准的和扩展的两种格式。1993年11月ISO颁布了道路交通运输工具-数据信息交换-高速通信局域网(CAN)国际标准ISO11898,为控制局域网的标准化和规范化铺平了道路。美国的汽车工程学会SAE于2000年提出的J1939,成为货车和客车中控制器局域网的通用标准。 2.J1939协议通信原理及内容 (1)J1939与CAN J1939是一种支持闭环控制的在多个ECU之间高速通信的网络协议冈。主要运用于载货车和客车上。它是以CAN2.0为网络核心。表1介绍了CAN2.0的标准和扩展格式,及J1939协议所定义的格式。表2则给出了J1939年的一个协议报文单元的具体格式。可以看出,J1939标识符包括:PRIORTY(优先权位);R(保留位);DP(数据页位);PDU FORMAAT(协议数据单元);PDU SPECIFIC(扩展单元)和SOURCE ADDRESS(源地址)。而报文单元还包括64位的数据场。

汽车空调自动控制系统设计

: 汽车空调自动控制系统设计 摘要 随着现代汽车技术的发展,汽车的空调技术已经很发展的成熟,可是随着社会的进步,人们对舒适性的要求也越来越来高了。由于人们的要求提高了,从而反应出现代汽车空调系统的几大缺点,需要进行改进。本设计就是根据几大缺点进行的改进设计,设计提供一种8位单片机为控制核心的汽车自动控制系统。 本文针对现代汽车的不足之处进行改进,采用8位单片机为核心,以数字温度传感器、车速传感器、发动机转速传感器作为测量元件,并实时监测、显示车内温湿度、车速和发动机转速,通过控制电路的通断来达到对汽车空调自动控制功能。另外本文还加了一个延时电路,来控制风扇后关闭。本文还阐述了汽车空调及系统的组成及原理,并完成总体硬件设计和软件的编写。 关键词:汽车空调自动控制, 单片机, 传感器 , … 【

目录 ` 1 绪论 (1) 1.1 课题来源及产生背景 (1) 1.2 课题研究的目的及意义 (1) 1.3 课题研究的主要内容 (1) 1.4 本课题的主要任务 (1) 2 汽车空调及空调自动控制系统的概述 (2) 2.1 汽车空调的概述 (2) 2.2 汽车空调自动控制系统的工作原理 (3) ^ 3 汽车自动控制系统的总体设计方案 (4) 4 汽车空调控制系统的设计原则 (4) 5 主要设计硬件的选择 (5) 4.1 单片机AT89S52 (5) 4.1.1 主要性能 (5) 4.1.2 功能特性描述 (5) 4.1.3 引脚结构 (6) ' 4.1.4 方框图 (9) 4.2 数字温湿度传感器DHT11 (11) 4.2.1 DHT11的概述 (11) 4.2.2 传感器性能特点 (11)

数字通信原理复习

复习题 名词:同步, 映射, 抽样,量化, DPCM, 汉明码, 复用, 定位,时分多路复用,正码速调整,同步复接,异步复接 问答: 1.数字信号和模拟信号的特点。 2.数字信号的有效性和可靠性指标及其计算方法。 3.为什么数字通信的抗干扰性强,无噪声积累? 4.低通和带通信号抽样定理。 5.回答均匀量化与非均匀量化的特点,说明为什么引入非均匀量化. 6.说明码的抗干扰能力与最小码距的关系. 7.什么叫PCM零次群? PCM30/32一至四次群的速率和接口码型分别是什么? 8.帧同步的目的是什么? PCM30/32系统的帧同步码型为何? 9.PCM帧同步系统处理流程图。 10.PCM30/32系统帧结构。 11.PCM帧同步系统中,前方保护和后方保护分别是指什么?其各自防止的现 象是什么? 12.PCM一次群到异步复接二次群,与同步复接的区别。 13.简述SDH通信系统的特点。 14.SDH帧结构分哪几个区域? 各自的作用是什么? 15.SDH 网的速率等级有哪些? 16.SDH 中复用的概念是什么? 17.SDH 传送网的基本物理拓扑有哪几种? 18.SDH数字通信系统的特点是什么? 19.画出SDH帧结构,计算出STM-N各个区域的速率大小 20.SDH网同步方式和时钟工作方式。 21.G.707 SDH复用结构。 计算方面: 1.A律13折线编解码,7/11变换; 2.带通信号的抽样及其计算,抽样后信号的频谱形式; 3.循环码计算,循环码多项式,监督矩阵和生成矩阵

4.SDH帧结构中各个信息结构速率的计算 5.系统循环码的多项式计算。 1. 某设备未过载电平的最大值为4096mv,有一幅度为2000mv的样值通过A律13折线逐次对分编码器,写出编码器编码过程及输出的8位PCM码。 2. PCM30/32路的帧长,路时隙宽,比特宽,数码率各为多少? 3. 设数字信号码元时间长度为05sμ,如采用八电平传输,求信息传输速率及符号速率;若传输过程中2秒误1个比特,求误码率。 4. 为什么同步复接要进行码速变换? 答:对于同步复接,虽然被复接的各支路的时钟都是由同一时钟源供给的,可以保证其数码率相等,但为了满足在接收端分接的需要,还需插入一定数量的帧同步码;为使复接器、分接器能够正常工作,还需加入对端告警码、邻站监测及勤务联络等公务码(以上各种插入的码元统称附加码),即需要码速变换。 5. 异步复接中的码速调整与同步复接中的码速变换有什么不同? 答:码速变换是在平均间隔的固定位置先留出空位,待复接合成时再插入脉冲(附加码); 而码速调整插入脉冲要视具体情况,不同支路、不同瞬时数码率、不同的帧,可能插入,也可能不插入脉冲(不插入脉冲时,此位置为原信息码),且插入的脉冲不携带信息。 6.由STM-1帧结构计算出①STM-1的速率。②SOH的速率。③AU-PTR的速率。 7.采用13折线A律编码,设最小的量化级为1个单位,已知抽样脉冲值为-95 单位。 (1)试求此时编码器输出码组,并计算量化误差(段内码用自然二进制码);写出对应于该7位码(不包括极性码)的均匀量化11位码。 8.设数字信号码元时间长度为1sμ,如采用四电平传输,求信息传输速率及符 号速率。 答:符号速率为

J1939协议理解

J1939协议理解 今天读了J1939协议的介绍文档,下面主要说说我的理解: 1、网络应用分为几个层 物理层 SAE J1939-11 数据链路层 SAE J1939-21 网络层 SAE J1939-31 应用层 SAE J1939-71 故障诊断 SAE J1939-73 网络管理层 SAE J1939-81 2、下面主要说说数据链路层和应用层 数据链路层:为物理连接之间提供可靠的数据传输。包括发送CAN 数据帧所必需的同步、顺序控制、 出错控制和流控制。 首先要明白几个概念 PGN:参数组编号 帧(Frame): 组成一个完整信息的一系列有序的数据位。帧又被划分成几个域,每个域包括了预定义类型的数据。 CAN 数据帧(CAN Data Frame):组成CAN 协议帧所必需的有序位域,以帧起始(SOF)开始以帧结束(EOF)结尾。 标准帧(Standard Frame):CAN2.0A规范中定义的使用11 位标识符的CAN 数据帧。 扩展帧(Extended Frame):CAN2.0 B规范中定义的使用29 位标志符的CAN 数据帧。 包(Packet):一个单一的CAN 数据帧就是一个包。当一条报文包含参数组的数据长度小于等于8个字节时,这样的报文也称为包。 报文(Message):指一个或多个具有相同参数组编号的(PGN)数据帧。也就是说只要一个或多个CAN数据帧具有相同的PGN号,那他们就是属于一个报文。 多包报文(Multipacket Messages):当具有相同参数组编号的所有数据需要使用多个CAN 数据帧来传输时使用的一种J1939报文。每个CAN 数据帧拥有相同的标识符,但在每个包中数据不同。 协议数据单元PDU的格式

数字通信原理与技术(第四版)复习笔记

数字通信原理与技术(第四版) 西安电子科技大学出版社 复习笔记 第一章 我国主要采用欧洲的GSM系统 第四代移动通信系统 特点:1.传输速度更高2.通信服务多元化3.智能化程度更高4.良好的兼容性 关键技术:1.定位技术2.切换技术3.软件无线电技术4.智能天线技术 5.无线电在光纤中的传输技术 6.网络协议与安全 7.传输技术 8.调制和信号传输技术 “三网融合”趋势:电信网,计算机网,有线电视网 一般意义上的通信是指由一地向另一地进行消息的有效传递。 通信从本质上来讲是实现信息传递功能的一门科学技术,它要将有用的信息无失真、高效率地进行传输,同时还要在传输过程中将无用信息和有害信息抑制掉。 通信中工作频率与工作波长可互换:公式为λ=c/f,λ工作波长,f工作频率,c光速 基带传输:不采用调制频带传输:采用调制 脉冲数字调制:APC-自适应可预测编码LPC-线性可预测编码 通信方式: 1.按消息传送的方向与时间分 单工通信:单方向传输。广播 半双工通信:不能同时收和发。对讲机、收发报机 全双工通信:可同时双向传输信息。普通电话、各种手机 2.按数字信号排序分 串序传输:代表信息的数字信号序列按时间顺序一个接一个在信道传输 并序传输:分割成两路或以上的序列同时在信道传输 3.按通信网络形式分 点到点通信方式、点到多点通信(分支)方式、多点到多点通信(交换)方式 通信必有三个部分:发送端、接收端、信道 模拟通信系统两种变换: 1.把连续消息变换成电信号(发端信息源完成)和把电信号恢复成最初的连续信号(收端受信者完成) 2.将基带信号转换成其频带适合信道传输的信号,由调制器完成;在接收端经过相反的变换,由解调器完成 已调信号三个基本特性: 1.携带有信息 2.适合在信道中传输 3.具有较高频率成分 数字通信系统:信道中传输数字信号的系统 数字频带传输通信系统 在数字通信中,称节拍一致为“位同步”或“码元同步”; 称编组一致为“群同步”或“帧同步”。

汽车发动机的工作原理和各部件作用

汽车发动机的工作原理和各部件作用 汽车, 原理, 发动机 发动机,又称为引擎,是一种能够把一种形式的能转化为另一种更有用的能的机器,通常是把化学能转化为机械能。(把电能转化为机器能的称谓电动机)有时它既适用于动力发生装置,也可指包括动力装置的整个机器.比如汽油发动机,航空发动机. 基本理论 汽油发动机将汽油的能量转化为动能来驱动汽车,最简单的办法是通过在发动机内部燃烧汽油来获得动能。因此,汽车发动机是内燃机----燃烧在发动机内部发生。 有两点需注意: 1.内燃机也有其他种类,比如柴油机,燃气轮机,各有各的优点和缺点。 2.同样也有外燃机。在早期的火车和轮船上用的蒸汽机就是典型的外燃机。燃料(煤、木头、油)在发动机外部燃烧产生蒸气,然后蒸气进入发动机内部来产生动力。内燃机的效率比外燃机高不少,也比相同动力的外燃机小很多。所以,现代汽 车不用蒸汽机。 相比之下,内燃机比外燃机的效率高,比燃气轮机的价格便宜,比电动汽车容易添加燃料。这些优点使得大部分现代汽车都使用往复式的内燃机。 结构 机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。 一. 气缸体 水冷发动机的气缸体和上曲轴箱常铸成一体,称为气缸体——曲轴箱,也可称为气缸体。气缸体一般用灰铸铁铸成,气缸体上部的圆柱形空腔称为气缸,下半部为支承曲轴的曲轴箱,其内腔为曲轴运动的空间。在气缸体内部铸有许多加强筋,冷却 水套和润滑油道等。 气缸体应具有足够的强度和刚度,根据气缸体与油底壳安装平面的位置不同,通常 把气缸体分为以下三种形式。

汽车总线系统通信协议分析与比较

河南机电高等专科学校 《汽车单片机与局域网技术》 大作业 专业班级:汽电112 姓名:史帅峰 学号:111606240 成绩: 指导老师:袁霞 2013年4月16日 汽车总线系统通信协议分析与比较 摘要:本文主要针对汽车总线系统通讯协议,探讨汽车总线通讯协议的种类、发展趋势以及技术特点。在对诸多组织和汽车制造商研发的各类汽车总线进行比较和探讨的基础上,对其现状进行了分析;并综合汽车工业的特点对这两大类汽车总线协议的发展前景作了分析。关键词:汽车总线技术通讯协议车载网络 引言:汽车电子技术是汽车技术和电子技术结合发展的产物。从20世纪60年代开始,随着电子技术的飞速发展,汽车的电子化已经成为公认的汽车技术发展方向。在汽车的发展过程中,为了提高汽车的性能而增加汽车电器,电器的增加导致线缆的增加,而线束的增加又使整车质量增加、布线更加复杂、可维护性变差,从而又影响了汽车经济性能的提高。因此,一种新的技术就被研发出来,那就是汽车总线技术。总线技术在汽车中的成功应用,标志着汽车电子逐步迈向网络化。 一、车载网络的发展历程 20世纪80年代初,各大汽车公司开始研制使用汽车内部信息交互的通信方式。博世公司与英特尔公司推出的CAN总线具有突出的可靠性、实时性和灵活性,因而得到了业界的广泛认同,并在1993年正式成为国际标准和行业标准。TTCAN对CAN协议进行了扩展,提供时间触发机制以提高通讯实时性。TTCAN的研究始于2000年,现已成为CAN标准的第4部分ISO11898-4,该标准目前处于CD(委员会草案)阶段。 1994年美国汽车工业协会提出了1850通信协议规范。从1998年开始,由宝马、奥迪等七家公司和IC公司共同开发能满足车身电子要求的低成本串行总线技术,该技术在2000年2月2日完成开发,它就是LIN。 FlexRay联盟推进了FlexRay的标准化,使之成为新一代汽车内部网络通信协议。FlexRay车载网络标准已经成为同类产品的基准,将在未来很多年内,引导整个汽车电子产品控制结构的发展方向。FlexRay是继CAN和LIN之后的最新研发成果。 车载网络的分类及其网络协议 从20世纪80年代以来不断有新的网络产生,为了方便研究和应用,美国汽车工业协会(SAE)的车辆委员会将汽车数据传输网络划分为A、B、C三类。 A类网络 A类网络是面向传感器/执行器控制的低速网络,数据传输速度通常小于10kb/s,主要用于后视镜调整、电动车窗、灯光照明等控制。 A类网络大都采用通用异步收发器(UART,Universal Asynchronous Receiver/Trsmitter)标准,使用起来既简单又经济。但随着技术水平的发展,将会逐步被其他标准所代替。 A类网络目前首选的标准是LIN总线,是一种基于UART数据格式、主从结构的单线12V总线通信系统,主要用于智能传感器和执行器的串行通信。

数字通信原理试卷及答案.

数字通信原理试卷一 一、填空题(每题3分) 1、通信的目的是_______ 或________ 信息。 2、通信方式有两种基本形式,即________通信和_______ 通信。 3、数字通信在____________和____________上均是离散的。 4、某一数字信号的符号传输速率为1200波特(Bd),若采用四进制传输,则 信息传输速率为___________。 5、设信道的带宽B=1024Hz,可传输2048 bit/s的比特率,其传输效率η=_________。 6、模拟信号经抽样、量化所得到的数字序列称为________信号,直接传输这种 信号称为___________。 7、目前最常用的多路复用方法为________复用和_______复用。 8、由于噪声的干扰可能使帧同步码出现误码,我们将这种情况称为_____________。 9、一般PCM(脉冲编码调制)的帧周期为__________。 10、PCM30/32制式中一复帧包含有_____帧,而每一帧又包含有_____个路时 隙,每一路时隙包含有______个位时隙。 一、1、交换、传递;2、基带传输、频带传输;3、幅度、时间;4、2400b/s 5、2b/s/hz; 6、数字、基带; 7、频分、时分; 8、假失步; 9、125 us 10、16 32 8 二、选择题(每题2分)二、1、a ;2、b ;3、c ;模拟信号的特点为: (a) 幅度为连续(b) 时间域上全有值 (c) 幅度连续,时间间断(d) 幅度离散 1、数字基带信号为: (a) 基础信号(b)完成了模数变换后的信号 (c) 频带搬以后的信号(d)仅为和值的信号 2、量化即 (a) 对样值进行定量(b) 在时间域上进行离散化 (c) 将信号样值幅度变换为有限个离散值 (d)将样值幅度分层为无限个值

纯电动车BMS与整车系统CAN通信协议详情

文件类型:技术类密级:保密 正宇纯电动车 电池管理系统与整车系统CAN通信协议 (GX-ZY-CAN-V1.00)

版本记录 版本制作者日期说明 V1.00 用于永康正宇纯电动车系统姓名日期签名 拟定 审查 核准 1 范围 本标准规定了电动汽车电池管理系统(Battery Management System,以下简称BMS)与电机控制器(Vehicle Control Unit,简称VCU)、智能充电机(Intelligent Charger Unit,简称ICU)之间的通信协议。 本标准适用于电动汽车电池管理系统与整车系统和充电系统的数据交换。

本标准的CAN标识符为29位,通信波特率为250kbps。 本标准数据传输采用低位先发送的格式。 本标准应用于正宇纯电动轿车电池管理系统。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的版本适用于本文件。凡不是注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 ISO 11898-1:2006 道路车辆控制器局域网络第1部分:数据链路层和物理信令(Road Vehicles –Controller Area Network (CAN) Part 1:Data Link Layer and Physical Signalling). SAE J1939-11:2006 商用车控制系统局域网络(CAN)通信协议第11部分:物理层,250Kbps,屏蔽双绞线(Recommanded Practice for a Serial Control and Communications Vehicle Network Part 11:Physical Layer,250Kbps,Twisted shielded Pair). SAE J1939-21:2006商用车控制系统局域网络(CAN)通信协议第21部分:数据链路层(Recommanded Practice for a Serial Control and Communications Vehicle Network Part 21:Data Link Layer). 3 网络拓扑结构说明 电动汽车网络采用CAN 互连结构如下所示,CAN1总线为电池管理系统与电机控制器之间的数据通信总线,CAN2总线为电池管理系统与充电机之间的数据通信总线。电池管理系统内部主控单元与电池管理单元之间通过内部CAN总线进行数据通信。电机控制

J1939协议理解

J1939协议理解 今天读了 J1939协议的介绍文档,下面主要说说我的理解: 1、网络应用分为几个层 物理层 SAE J1939-11 数据链路层SAE J1939-21 网络层 SAE J1939-31 应用层 SAE J1939-71 故障诊断SAE J1939-73 网络管理层SAE J1939-81 2、下面主要说说数据链路层和应用层 数据链路层:为物理连接之间提供可靠的数据传输。包括发送 步、顺序控制、 出错控制和流控制。 CAN 数据帧所必需的同 首先要明白几个概念 PGN :参数组编号 帧(Frame ):组成一个完整信息的一系列有序的数据位。帧又被划分成几个域,每个 域包括了预定义类型的数据。 CAN 数据帧(CAN Data Frame ):组成 开始以帧结束(EOF )结尾。 标准帧(Standard Frame ):CAN2.0A 扩展帧(Extended Frame ):CAN2.0 B CAN 协议帧所必需的有序位域, 以帧起始(SOF ) 规范中定义的使用 11位标识符的CAN 数据帧。 规范中定义的使用 29位标志符的CAN 数据帧。 当一条报文包含参数组的数据长度 包(Packet ):一个单一的 CAN 数据帧就是一个包。 小于等于8个字节时,这样的报文也称为包。 报文(Message ):指一个或多个具有相同参数组编号的( PGN )数据帧。也就是说只 要一个或多个 CAN 数据帧具有相同的 PGN 号,那他们就是属于一个报文。 ):当具有相同参数组编号的所有数据需要使用多个 J1939报文。每个CAN 数据帧拥有相同的标识符, 多包报文(Mult ip acket Messages CAN 数据帧来传输时使用的一种 但在每个包中数据不同。 协议数据单元PDU 的格式 it ■k PDU 1 PDUy ■ M 嶋 1 EDP 0P PF DATA L L 1 3 时t 伽」 PGN 25仪苛歆幷

汽车空调工作原理及管路连接简图

汽车空调工作原理 汽车空调工作原理 一.汽车空调的工作原理 其实汽车空调和我们熟悉的家用空调制冷原理是一样的。都是利用R12或是R134a压缩释放的瞬间体积急剧膨胀就要吸收大量热能的原理制冷。(由于R12对大气臭氧层的破坏,出于环保的要求发达国家从1996年开始改用R134a做制冷剂)汽车空调的构造和家用的分体空调类似,它的压缩机往往是安装在发动机上,并用皮带驱动(也有直接驱动的),冷凝器安装在汽车散热器的前方,而蒸发器在车里面,工作时从蒸发器出来的低压气态致冷剂流经压缩机变成高压高温气体,经过冷凝器散热管降温冷却变成高压低温的液体,再经过贮液干燥器除湿与缓冲,然后以较稳定的压力和流量流向膨胀阀,经节流和降压最后流向蒸发器。致冷剂一遇低压环境即蒸发,吸收大量热能。车厢内的空气不断流经蒸发器,车厢内温度也就因此降低。液态致冷剂流经蒸发器后再次变成低压气体,又重新被吸入压缩机进行下一次的循环工作。在整个系统中,膨胀阀是控制致冷剂进入蒸发器的机关,致冷剂进入蒸发器太多就不易蒸发而太少冷气又会不够,因此膨胀阀是调节中枢。而压缩机是系统的心脏,系统循环的动力源泉。 尽管汽车空调的空调系统的原理与其它空调系统是相同的,但汽车空调是移动式车载的空调装置,它与固定式空调系统相比,动转条件更恶劣,随汽车行驶的颤振,空调系统的制冷剂比固定式更容易泄漏,空调系统的维修与保养也比固定式频繁,空调装置中风路系统在吸入新风时常常会将尘土吸入,堵塞过滤网及蒸发器,在清洗过程中又往往会把制冷剂泄放到大气中去。造成臭氧层消耗,破坏了环境。 二.汽车空调的组成 汽车空调一般主要由压缩机(compressor)、电控离合器、冷凝器(condenser)、蒸发器(evaporator)、膨胀阀(expansion valve)、贮液干燥器(receiver drier)、管道(hoses)、冷凝风扇、真空电磁阀(vacuum solenoid)、怠速器和控制系统等组成。汽车空调分高压管路和低压管路。高压侧包括压缩机输出侧、高压管路、冷凝器、贮液干燥器和液体管路;低压侧包括蒸发器、积累器、回气管路、压缩机输入侧和压缩机机油池。 贮液干燥器——实际上是一个贮存制冷剂及吸收制冷剂水分、杂质的装置。一方面,它相当于汽车的油箱,为泄露制冷剂多出的空间补充制冷剂。另一方面,它又像空气滤清器那样,过滤掉制冷剂中掺杂的杂质。贮液干燥器中还装有一定的硅胶物质,起到吸收水分的作用。

相关主题