当前位置:文档之家› 材料力学性能-第2版课后习题答案

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能1、 解释下列名词。

2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。

3•循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。

4•包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的现象。

11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称为韧脆转变2、 说明下列力学性能指标的意义。

答:E 弹性模量G 切变模量 r 规定残余伸长应力0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率n 应变硬化指数【P15】3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。

合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。

组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。

【P4】4、 现有45、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么?选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。

5、 试述韧性断裂与脆性断裂的区别。

为什么脆性断裂最危险?【P21】答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。

6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些?答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。

上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。

7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源?断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。

第二章 金属在其他静载荷下的力学性能一、解释下列名词:(1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即:(3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47P55】max13 max 2 10.523【新书P39旧书P46】六、试综合比较光滑试样轴向拉伸、缺口试样轴向拉伸和偏斜拉伸试验的特点。

偏斜拉伸试验:在拉伸试验时在试样与试验机夹头之间放一垫圈,使试样的轴线与拉伸力形成一定角度进行拉伸。

该试验用于检测螺栓一类机件的安全使用性能。

光滑试样轴向拉伸试验:截面上无应力集中现象,应力分布均匀,仅在颈缩时发生应力状态改变。

缺口试样轴向拉伸试验:缺口截面上出现应力集中现象,应力分布不均,应力状态发生变化,产生两向或三向拉应力状态,致使材料的应力状态软性系数降低,脆性增大。

偏斜拉伸试验:试样同时承受拉伸和弯曲载荷的复合作用,其应力状态更“硬”,缺口截面上的应力分布更不均匀,更能显示材料对缺口的敏感性。

七、试说明布氏硬度、洛氏硬度与维氏硬度的实验原理,并比较布氏、洛氏与维氏硬度试验方法的优缺点。

【P49 P57】原理布氏硬度:用钢球或硬质合金球作为压头,计算单位面积所承受的试验力。

洛氏硬度:采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度。

维氏硬度:以两相对面夹角为136。

的金刚石四棱锥作压头,计算单位面积所承受的试验力。

布氏硬度优点:实验时一般采用直径较大的压头球,因而所得的压痕面积比较大。

压痕大的一个优点是其硬度值能反映金属在较大范围内各组成相得平均性能;另一个优点是实验数据稳定,重复性强。

缺点:对不同材料需更换不同直径的压头球和改变试验力,压痕直径的测量也较麻烦,因而用于自动检测时受到限制。

洛氏硬度优点:操作简便,迅捷,硬度值可直接读出;压痕较小,可在工件上进行试验;采用不同标尺可测量各种软硬不同的金属和厚薄不一的试样的硬度,因而广泛用于热处理质量检测。

缺点:压痕较小,代表性差;若材料中有偏析及组织不均匀等缺陷,则所测硬度值重复性差,分散度大;此外用不同标尺测得的硬度值彼此没有联系,不能直接比较。

维氏硬度优点:不存在布氏硬度试验时要求试验力F与压头直径D之间所规定条件的约束,也不存在洛氏硬度试验时不同标尺的硬度值无法统一的弊端;维氏硬度试验时不仅试验力可以任意取,而且压痕测量的精度较高,硬度值较为准确。

缺点是硬度值需要通过测量压痕对角线长度后才能进行计算或查表,因此,工作效率比洛氏硬度法低的多。

八、今有如下零件和材料需要测定硬度,试说明选择何种硬度实验方法为宜。

(1)渗碳层的硬度分布;(2)淬火钢;(3)灰铸铁;(4)鉴别钢中的隐晶马氏体和残余奥氏体;(5)仪表小黄铜齿轮;(6)龙门刨床导轨;(7)渗氮层;(8)高速钢刀具;(9)退火态低碳钢;(10)硬质合金。

(1)渗碳层的硬度分布----HK 或-显(2)淬火钢-----HRC(3)灰铸铁-----HB(4)鉴别钢中的隐晶马氏体和残余奥氏体 - ---- 显或者HK(5) 仪表小黄铜齿轮 ——HV⑹ 龙门刨床导轨- -----HS (肖氏硬度)或 HL (里氏硬度)⑺ 渗氮层-----HV(8) 高速钢刀具---- -HRC(9) 退火态低碳钢- -——HB(10)硬质合金-----HRA第三章金属在冲击载荷下的力学性能四、试说明低温脆性的物理本质及其影响因素低温脆性的物理本质:宏观上对于那些有低温脆性现象的材料,它们的屈服强度会随温度的降低急剧增加,而断裂 强度随温度的降低而变化不大。

当温度降低到某一温度时,屈服强度增大到高于断裂强度时,在这个温度以下材料的屈服强度比断裂强度大,因此材料在受力时还未发生屈服便断裂了,材料显示脆性。

从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关,当温度降低时,位错运动阻力增大,原子热激活能 力下降,因此材料屈服强度增加。

影响材料低温脆性的因素有(P63, P73):1晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高,材料脆性断裂趋势明显,塑性差。

2•化学成分:能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高。

3•显微组织:①晶粒大小,细化晶粒可以同时提高材料的强度和塑韧性。

因为晶界是裂纹扩展的阻力,晶粒细小,晶界总面积增加,晶界处塞积的位错数减 少,有利于降低应力集中;同时晶界上杂质浓度减少,避免产生沿晶脆性断裂。

②金相组织:较低强度水平时强度相等而组织不同的钢,冲击吸收功和韧脆转变温度以马氏体高温回火最佳,贝氏体回火组织次之,片状珠光体组织最差。

钢中夹杂物、碳化物等第二相质点对 钢的脆性有重要影响,当其尺寸增大时均使材料韧性下降,韧脆转变温度升高。

五•试述焊接船舶比铆接船舶容易发生脆性破坏的原因。

焊接容易在焊缝处形成粗大金相组织气孔、夹渣、未熔合、未焊透、错边、咬边等缺陷,增加裂纹敏感度,增加材料 的脆性,容易发生脆性断裂。

第四章金属的断裂韧度5、试述应力场强度因子的意义及典型裂纹K 的表达式6、试述K 判据的意义及用途。

答:K 判据解决了经典的强度理论不能解决存在宏观裂纹为什么会产生低应力脆断的原因。

K 判据将材料断裂韧度同机件的工作应力及裂纹尺寸的关系定量地联系起来, 可直接用于设计计算,估算裂纹体的最大承载能力、允许的裂纹最大尺寸,以及用于正确选择机件材料、优化工艺等。

P71/P8312. 试述Kic 的测试原理及其对式样的基本要求原理:先用一定的试样测试出 FQ 和裂纹长度a 值得到一个KQ,如果KQ 符合条件就说明测试使用的试样符合条件,如果不符合就换成较大试样重新测试。

试样要求P78三个公式答:新书P69旧书P80参看书中图(应力场强度因子的意义见上) 几种裂纹的K 表达式,无限大板穿透裂纹:K有限宽板穿透裂纹:K、af (^);有限宽板单边直裂纹:a 时,K 1.2 a ;受弯单边裂纹梁K(几af ();无限大物体内部有椭圆片裂纹, b远处受均匀拉伸:a 2 (sin2a 2 j/42 cos ); c无限大物体表面有半椭圆裂纹,远处均受拉伸:A 点的K当b16.有一大型板件,材料的 d =1200MPa Klc=115MPa*m1/2,探伤发现有 20mm 长的横向穿透裂纹,若在平均轴向拉应力900MPa 下工作,试计算 KI 及塑性区宽度 R0,并判断该件是否安全?解:由题意知穿透裂纹受到的应力为d=900MPa根据d / d 的值,确定裂纹断裂韧度 KIC 是否休要修正 因为d / d =900/1200=〉,所以裂纹断裂韧度 KIC 需要修正对于无限板的中心穿透裂纹,修正后的KI 为:Ki =(MPa*m1/2)10-177( /s塑性区宽度为:R 0亠 比较K1与KIc : 2、2因为 K1= (MPa*m1 /2)KIc=115 (MPa*m1 ⑵所以:K1>KIc ,裂纹会失稳扩展,所以该件不安全。

第五章金属的疲劳3. 试述金属疲劳断裂的特点p96/p109(1) 疲劳是低应力循环延时断裂,机具有寿命的断裂(2) 疲劳是脆性断裂(3) 疲劳对缺陷(缺口,裂纹及组织缺陷)十分敏感4.试述疲劳宏观断口的特征及其形成过程(新书 P96~98及PPT ,旧书P109~111)答:典型疲劳断口具有三个形貌不同的区域一疲劳源、疲劳区及瞬断区。

(1)疲劳源是疲劳裂纹萌生的策源地,疲劳源区的光亮度最大,因为这里在整个裂纹亚稳扩展过程中断面不断摩擦挤 压,故显示光亮平滑,另疲劳源的贝纹线细小。

(2)疲劳区的疲劳裂纹亚稳扩展所形成的断口区域,是判断疲劳断裂的重要特征证据。

特征是:断口比较光滑并分布 有贝纹线。

断口光滑是疲劳源区域的延续,但其程度随裂纹向前扩展逐渐减弱。

贝纹线是由载荷变动引起的,如 机器运转时的开动与停歇,偶然过载引起的载荷变动,使裂纹前沿线留下了弧状台阶痕迹。

(3)瞬断区是裂纹最后失稳快速扩展所形成的断口区域。

其断口比疲劳区粗糙,脆性材料为结晶状断口,韧性材料为 纤维状断口。

7. 试述疲劳裂纹的形成机理及阻止疲劳裂纹萌生的一般方法机理:1、滑移带开裂产生裂纹。

金属在循环应力长期作用下,即使其应力低于屈服应力,也会发生循环滑移并形成循环 滑移带,这种循环滑移是极不均匀的,总分布在某些局部薄弱区,这种循环滑移带具有持久驻留性,称为驻留滑移带,随着加载循环次数增加,循环滑移带会不断地加宽,当加宽到一 定程度时,由于位错的塞积和交割作用,便在驻留滑移带处形成微裂纹。

相关主题