当前位置:
文档之家› 】欠驱动苹果采摘末端执行器设计
】欠驱动苹果采摘末端执行器设计
1.直接切断式:
这类末端执行器一般都是直接剪断果梗,由于其本身不能实现果实的回收,因此剪掉的果实直接落地或者落入事先放置的果箱中。例如,日本开发的甜椒采摘机器人末端执行器、茄子采摘末端执行器、番茄采摘末端执行器、美国柑橘采摘末端执行器均为此类结构,如图1-1、1-2、1-3所示。
图1-1甜椒采摘末端执行器
1.2
1.2.1
工业领域是机器人技术的传统应用领域,工业机器人处于可控制的人工环境内,并以均匀材质、确定的尺寸和形状的物体为操作对象,目前已经得到了相当成熟的应用,而采摘机器人工作在高度非结构化的复杂环境下,作业对象是有生命力的新鲜水果或蔬菜。同工业机器人相比,果蔬采摘机器人具有以下特点:
1、非结构性的操作环境。由于作物随时间和空间变化,工作环境在变,未知的,是开放性。除了受地形条件的限制,而且还直接受季节,气候等自然条件的作物生长环境。这不仅需要采摘机器人具有灵活性,以适应处理的生物学功能,并能够适应不断变化的自然环境,具有相当高的智慧在视觉,触觉,多传感器融合和知识推理和判断等方面。
1.3
末端执行器是果蔬采摘机器人的另一重要部件,它的设计通常被认为是机器人的核心技术之一。一般果蔬的外表比较脆弱,它的形状及生长状况通常复杂。在机器人采摘过程中果蔬外表发生损伤的原因主要有:
①水果和蔬菜位置识别或机械手控制计划是错误的,导致划伤或刺伤外观水果和蔬菜的致动器的末端;
②末端执行器夹持或抓取力过大,压伤果蔬外表;③末端执行器抓持不稳定导致果蔬掉落,与地面或其他坚硬物体接触而碰上外表。
4、作业动作的复杂性。通常同时进行移动机器人拾取操作,农业和行走的字段没有连接到的最短对焦距离的出发点,但有一个狭窄的范围在整个长途和偶数场的特性。
5、作业对象和价格的特殊性。采摘机器人经营者大多是农民,因此需要一个简单的采摘机器人必须具有高可靠性和工作特性。另一个重要的因素,智能化程度高导致水果制造成本较高,蔬菜采摘机器人,农民和农业经营者或不能接受的,并通过使用采摘机器人和季节限制的时间,效率不高,也限制了推广采摘机器人。
该末端执行器采摘方案合理有效、总体性能可满足机器人采摘苹果的要求。
关键词:苹果采摘机器人;末端执行器;机械设计
ABSTRACT
This article is designed to end an apple picking robot. The actuator clamping mechanism is a three-under-drive bionic robot. As the use of steel tendons can drive the drive part and the operative part of the separation, the driving portion is placed in the distal end of the arm to reduce the weight, while increasing the flexibility of selection of the drive motor.
如图1-5(a)所示比利时开发的苹果采摘机器人末端执行器,设计成漏斗的形状,漏斗内安置摄像机,当有果实进入手爪范围的时候,真空吸引器打开将果实吸入,再通过旋转扭断果梗将果实采摘下来。图1-5(b)所示英国开发的苹果采摘机器人末端执行器,由一截管道、两个内置圆环和两个弹簧盖组成,该末端执行器获取果实的原理也是吸入+扭断式,当苹果的位置信息传来之后,真空系统将果实吸入,再扭断果梗采摘下苹果。
苹果是我国生产的主要果品之一,2010年苹果产量占果品总产量的32.73%,居三大果品(苹果、柑橘、梨)之首。同时我国苹果种植面积2848万亩,产量2600万吨,分别占世界苹果面积、产量的35%上,规模居世界第一。机器人采摘在苹果采摘过程中的大量应用能够极大地提高采摘效率、节约成本,不过,虽然水果采摘过程中容易出现机械损伤,机械损伤也是门入侵的病原微生物,是烂水果的主要原因。由于受负载瘀伤的操作方面,打破,从而导致变质腐烂的水果多达30%~40%,每年的损失高达数百亿人民币。机械手是与果实直接接触的部分,因此设计一种轻巧易用且对果实损伤小的机械手显得尤为重要。
第一章
1.1
随着计算机技术和自动控制技术,农业高新技术的应用和推广的发展,农业机器人已逐渐进入农业生产领域,并促进现代农业装备走向机械化,生产智能化方向发展的。水果采摘是季节性的农业生产,劳动强度大,要求的工作是利用人工采摘不仅效率低下的一个重要方面,劳动密集,水果和蔬菜也造成了一定的伤害。智能机器人的水果和蔬菜的采摘劳动的解放研究和开发,提高生产效率,降低生产成本,保证了新鲜水果和蔬菜的品质,以及满足作物生长等方面的实时性要求有一个非常重要的意义。并且,随着下降,增加水果和蔬菜的采摘机器人的农业从业人员,开发和利用的老龄化趋势,具有巨大的经济效益和广阔的市场前景。
这类非夹持类末端执行器主要是通过真空系统将果实吸入末端执行器内,再通过切断、扭断等方式分离果实和果梗。
如图1-4所示的柑橘采摘末端执行器结构图,由真空吸盘先吸持住果实向后拉动,同时末端执行器的弹性盖板向前移动,使果实进入笼体内,然后盖板收缩进而保住果实,随后一对割刀合拢切断果梗。
图1-4柑橘采摘末端执行器
图1-5苹果采摘末端执行器
还有吸入+勾取的方式来获取果实等等。吸入式的末端执行器硬件设计简单,工作原理类似,对于果实娇嫩、果梗柔弱细长的草莓等果实,采取吸入加勾取比夹持的获取方式更可行,但这类末端执行器对果实个体尺寸差异适应能力较差动作速度较慢,稳定性不高,而且相邻的未成熟的果实也容易被一同吸入和采摘下来。
图1-2茄子采摘末端执行器
图1-3番茄采摘末端执行器
这类末端执行器的结构更能较为简单,适用于植株冠层内枝叶较稀疏,且果实具有一定抗冲击能力的果蔬。对于果梗较短的植株,往往造成无法剪切或碰上果实的现象,对于冠层空间比较复杂的植株,果实下落过程中很容易被碰上,并且下落的位置也不定,影响果实的回收。
2.吸入式:
本文设计了一种苹果采摘机器人的末端执行器。该执行器的夹持机构为一个三欠驱动仿生机械手。使用钢丝作为传动腱可以将驱动部分和执行部分分离,将驱动部分置于远端,减轻了机械臂末端的重量,同时增加了驱动电机选择的灵活性。
首先,对机械手的运动学进行了分析。其次,对机械手抓取稳定性的基本理论问题进行了分析和讨论,建立了抓取模型,为设计机械手的稳定抓取提供了理论依据。最后,对机械手的机械部分和控制部分进行了设计。
3.夹持类
这类末端执行器其夹持器通常由带有真空吸引器和数目不等的手指构成。按手爪的个数可分为两指和多指型,目前大多数果蔬采摘机器人末端执行器为两指,也有一些三指和四指的末端执行器,用于外形不规则或较大的果实。因此,一般情况下,对于形状较为规格,尺寸和质量部太大的果实,应首选较少手指进行抓持。
日本东京大学乔俊等人开发设计的甜椒采摘机器人末端执行器,该末端执行器具有两个瘦长形的手指,长度为160mm,厚度和宽度分别只有1mm和10mm。两个手指组成的手爪抓住果柄的过程由依靠一个凸轮的瞬时针旋转运动进行张开和夹紧动作,凸轮的旋转运动由一个步进电机进行驱动,凸轮为椭圆形,旋转90度后手爪就完成一次张开或夹紧的过程。
The program end picker reasonably effective to meet the overall performance requirements of apple picking robot.
关键词:Apple picking robot; end effector; mechanical design
作为采摘机器人的执行装置,末端执行器应根据不同果蔬果实的生物、机械特性及栽培方式,采取不同的专用机构以提高采摘的成功率并减小对果蔬的损伤为主要目标。一般集成两项功能:
①检测果实的位姿,为执行机构提供导航信息;
②适当努力夹紧及切割果柄或果柄采摘完成动作。得到在行动上通常包括水果和水果和植物中分离成两部分。为了安全高效地完成采摘行动,最终也可能被添加到吸盘,推杆和各种传感器,如额外的机制来完成,准确配货,减少损伤。
1.2.2
水果和蔬菜的采摘机器人的研究始于20世纪60年代,在20世纪的美国,用于收割方法主要是机械和气动摇晃摇晃风格。缺点是水果的脆弱性,效率不高,是不是特别有选择性的收获,存在很大的局限性采摘柔软,新鲜水果和蔬菜方面。但此后,随着电子技术和计算机技术的发展,特别是在工业机器人,日益成熟的计算机图像处理技术和人工智能技术,采摘机器人的研究和技术开发得到了快速发展。目前,日本,荷兰,法国,英国,意大利,美国,以色列,西班牙等国相继推出的水果和蔬菜采摘机器人方面的研究相关的研究主要橘子,苹果,西红柿,樱桃西红柿,芦笋,黄瓜,甜瓜,葡萄,甘蓝,菊花,草莓,蘑菇等,但这些收益还没有真正商业化经营的机器人。
1.3.1
获取和分离果实是采摘机器人末端执行器必须实现的两大关键动作,即首先通过抓取、吸入、勾取等一定方式获取果实,再通过扭断、剪切等不同方法完成果实与果梗的分离。从目前发表的文献来看,获取果实的方式主要归为非夹持类和夹持类两种。分离果实与果梗的方式有传统的扭断、折断、拉断以及通过剪刀或切刀进行切断,还有新式的热切割方法等。
First, the robot kinematics is analyzed. dly, the stability of the robot to crawl the basic theory problems are analyzed and discussed the establishment of a crawl model, designed to stabilize the crawling robot provides a theoretical basis. Finally, the part and the control part of the mechanical robot was designed.