延迟焦化工艺与工程第七章焦炭塔和焦化分馏塔第七章焦炭塔和焦化分馏塔7.1焦炭塔7.1.1焦炭塔工艺特点和结构特点7.1.2焦炭塔操作及对寿命的影响7.1.3焦炭塔材质选择7.1.4焦炭塔裙座结构7.1.5焦炭塔保温7.1.6焦炭塔结构设计改进7.1.7焦炭塔大型化7.1.8焦炭塔仪表、自动化7.1.9焦炭塔的检测和寿命评估7.2 焦化分馏塔7.2.1焦化分馏塔设计特点7.2.2焦化分馏塔的塔板结构第七章焦炭塔和焦化分馏塔7.1焦炭塔7.1.1焦炭塔的工艺特点和设备特点延迟焦化是以渣油或类似渣油的各种重质油、污油及原油为原料,通过加热炉快速加热到一定的温度后进入焦炭塔,在塔内适宜的温度、压力条件下发生裂解、缩合反应,生成气体、汽油、柴油、蜡油、循环油组分和焦炭的工艺过程,见图7-1。
延迟焦化装置的主要设备有焦化加热炉、焦炭塔、焦化分馏塔、吹汽放空塔、加热炉进料泵、水力除焦机械等,其中焦化加热炉被认为是焦化装置的关键设备,而焦炭塔则是焦化装置的核心设备。
因为焦炭塔是焦化装置的反应器,加热炉、分馏塔、放空系统、冷切焦水处理系统、水力除焦系统等均与之有关。
虽然焦炭塔是一个空筒设备,但它的设计涉及到几乎全装置的工艺过程。
焦炭塔的工艺特点是操作温度高,最高可达到495℃,操作温度变化频繁,每一个操作周期都要由常温变化到最高操作温度,并生焦周期越短,变温速度越快;它不但是一个反应器而且还是一个装焦炭的容器,操作不当会使生焦的泡沫溢出,造成后部系统结焦。
焦炭塔在生焦过程中基本处于恒温操作。
在除焦过程中要经过先降温再升温的变化过程,往往由这一个变温操作过程使焦炭塔及其相关系统的设计有些复杂。
焦炭塔一般是两台一组,每套延迟焦化装置中有的是一组(两台),有的是两组(四台)焦炭塔。
在每组塔中,一台塔在反应生焦时,另一台塔则处于除焦阶段。
即当一台塔内焦炭积聚到一定高度时进行切换,切换后先通入少量蒸汽把轻质烃类汽提去分馏塔,再大量通入蒸汽,汽提重质烃类去放空冷却塔,回收重油和水。
待含在焦炭内的大量油被吹出后再通入冷却水使焦炭冷却到80℃左右,然后除焦。
除焦完成后再用另一个塔的油气预热到400℃左右,然后切换进料。
每台塔的切换使用周期一般为48小时,其中生焦24小时,除焦及其它辅助操作24小时(见表7-1)。
除焦采用高压水,高压水压力达14.8~30MPa。
取决于塔径的大小。
随着技术的进步,目前每台塔的切换周期已缩短,一般30~36小时。
除下的焦炭落入焦池,同时用桥式起重抓斗经皮带输送到别处存放或装车外运。
装置所产的气体和汽油,分别用气体压缩机和泵送入稳定吸收系统进行分离,得到干气及液化气,并使汽油的蒸汽压合格。
柴油需要加氢精制,蜡油可作为催化裂化及加氢裂化原料或燃料油。
表7-1图7-1延迟焦化流程焦炭塔的工艺设计主要包括焦炭塔直径的确定、塔高的确定、和相关系统的设计。
焦炭塔的直径和高度焦炭塔的直径和高度主要取决于装置的处理量、原料性质、操作温度、操作压力和循环比。
装置的处理量是决定焦炭塔大小的主要参数,目前国内单塔处理量和焦炭塔规格的对应关系如下:焦炭塔的单塔处理量越大,要求的焦炭塔直径越大,这主要是由焦炭塔塔内的允许气速决定的。
焦化原料渣油在加热炉中被快速加热到500℃左右进入焦炭塔,为防止加热炉管结焦,炉出口的反应转化率一般不大于8%(气体和汽油的转化率),大部分的反应延迟到焦炭塔内进行。
原料进入焦炭塔,在塔内适宜的压力、温度和停留时间的条件下发生裂解和缩合反应,裂解为吸热反应,缩合为放热反应,裂解的热量除了来自原料渣油本身外还有一部分由缩合反应提供,缩合反应生成的焦炭停留在塔内,并由塔壁向中心扩展,中心形成进料通道,在焦炭层以上为主要反应区,即泡沫层。
泡沫层分油相泡沫和气相泡沫,气相泡沫在上部,其密度约为30~100kg/m3,油相泡沫在焦层以上,其密度约为100~700 kg/m3,焦化反应温度即为泡沫层温度,一般为460~480℃,并且生焦率越高,该反应温度越高。
随着原料的不断进入,产生的焦炭量不断增加,焦炭层高度增加,泡沫层也随之连续升高。
塔内反应示意见图7-2。
图7-2焦炭塔内生焦示意图由于泡沫层为反应区,一般不希望正在反应的泡沫被油气夹带到焦炭塔顶口的大油气管线和分馏塔,导致管线结焦和分馏塔内结焦影响产品质量。
焦炭塔内油气的允许气速可用下式计算:其中Uc为塔内气相线速,m/s;为轻相泡沫层密度,kg/m3;为气相层密度,kg/m3;据资料报导,国外在焦炭塔内不注入消泡剂时,允许气速一般为0.11~0.17m/s。
在使用消泡剂时,正常的设计油气速度应低于0.12~0.21m/s。
根据允许的油气速度和焦炭塔内的油气流量,结合进料性质和塔顶操作压力即可确定焦炭塔的直径。
焦炭塔内的油气体积流量除和渣油进料量有关外,与原料性质、操作条件也有密切的关系。
在确定焦炭塔的直径以前应首先确定焦炭塔的操作条件和产品分布。
渣油是以碳、氢为主要元素的大分子烃类,通常分为饱和烃、芳烃、胶质和沥青质,沥青质含量高的渣油生焦率较高,轻油收率较低。
一般生焦率的估算可按式:Wc=1.6K进行,其中K为渣油的康氏残炭,产品分布一般最终由试验确定。
当原料性质确定后,对生焦率和产品分布影响较大的主要是循环比、反应温度和压力。
循环比减少10%,生焦率一般减少1%,同时焦化蜡油收率增加,气体、汽油、柴油收率下降。
当需要提高装置的液体收率时一般采用降低循环比(0.15~0.25)或零循环比操作;当需要多产焦化石脑油和柴油时一般采用较大循环比(0.25~0.45)操作;当焦化蜡油无出路或需要最大可能地生产柴油和乙烯原料时一般采用大循环比(0.4~1.0)操作。
循环比越大,焦炭塔内的油气体积流量越大。
提高焦化温度可增产液体产品收率,但基于焦化反应的特点,反应温度(炉出口温度控制)调整的幅度是很窄的,温度过高会导致提前结焦,堵塞炉管、转油线,影响开工周期,同时易生成硬质石油焦,使除焦困难;温度过低导致热量不足反应深度不够,轻油收率降低,焦炭挥发分增大或产生焦油。
一般情况下是根据原料性质确定最佳的操作温度,通常焦化炉出口温度为495~505℃,芳烃含量和沥青质含量的比值较大时宜采用较高的炉出口温度。
采用低压操作可改善焦化产品分布,在国内外已普遍认可,国内焦炭塔塔顶操作压力一般为0.15~0.20Mpa,国外最低的达到0.1~0.15Mpa。
压力降低一般能提高蜡油的收率,但是增大了焦炭塔的气体体积流量,势必使焦炭塔的塔径和油气管线加大,并影响压缩机的加大,所以装置的投资增加,因此应综合设备投资、操作费用和产品分布等因素确定适宜的操作压力。
在基本确定焦炭塔的直径后,根据焦炭产率、生焦时间、泡沫层高度来确定焦炭塔的高度。
焦炭产率和原料性质、操作条件有关,泡沫层高度和原料性质、反应温度及压力有关,一般情况下生焦率高的渣油反应的泡沫层高度小,生焦率低的渣油的泡沫层高度大。
当在焦炭塔内注入消泡剂后,泡沫层的高度一般减少40~65%。
当单塔处理能力、原料性质和操作条件确定后,塔内的焦层高度主要决定于生焦时间。
目前国内焦化装置设计的生焦时间均为24小时,国外焦化生焦时间为12~24小时,采用16~18小时的占大多数,采用短的生焦时间,可以提高焦炭塔的利用率,或者同等规模的焦炭塔的高度减少。
在确定焦炭塔高度时应留有一定的安全空高,安全空高一般为塔顶切线离泡沫层顶部的距离。
国内设计的焦炭塔一般安全空高大于等于5米,国外焦炭塔的安全空高一般为2~3米。
空高越大,焦炭塔的利用率越低,但油气在塔内的停留时间延长,对减少油气线和分馏塔内结焦有利。
空高的计算公式如下:其中:H切-焦炭塔切线高度,m;G焦-焦炭生焦率,kg/h;焦-生焦时间,hr;焦-塔内焦炭堆密度,kg/m3(800~900kg/m3);V锥-焦炭塔锥体体积:m3;D塔-焦炭塔直径,m;H泡沫-泡沫层高度,m。
通常所说的缩短生焦时间可以提高处理量,只是焦炭塔的安全空高增大,相应的油气线速可以在较高的范围内操作。
另外采用在生焦初期加大焦炭塔的进料,生焦末期减少焦炭塔的进料的措施,也可以提高装置的年加工能力。
焦炭塔直径和切线高度的关系焦炭塔直径和高度相互补充,当装置处理量、操作条件确定后,直径增大可以降低高度,高度增加也可以适当减少塔径。
国内在过去建设的焦炭塔的直径一般为5.4~6.4米,其高径比一般为3~4。
最近建设的大直径焦炭塔的高径比一般为2~3。
美国焦炭塔的高径比一般为2~3。
焦炭塔的直径和高度受到水力除焦机械,制造、运输、吊装等的限制,不宜太大和太高,美国目前运行的最大焦炭塔的直径为9.114米。
建议在装置处理量较大,采用一炉二塔使焦炭塔的直径和高度特别庞大时,采用二炉四塔或三炉六塔更为适宜。
焦炭塔的结构特点焦炭塔是一个直立园柱壳压力容器,顶部是球形或椭圆形封头,下部是锥体,见图7-3。
直径范围通常为4.6~9.4米,高约25~35米。
在顶部有直径为φ600~φ1500的盲板法兰(即钻焦口),底部有φ1600~φ2000的盲板法兰(即卸焦口),该盲板法兰上有φ150~φ300的渣油入口接管。
裙座位于连接壳体与锥体焊缝的区域,用来支撑塔体。
通常焦炭塔是用碳钢、C-1/2Mo、1Cr-1/2Mo、1 1/4Cr-1/2Mo和2 1/4Cr-1.0Mo钢制造,其壁厚通常在14~42毫米之间。
通常,焦炭塔壳体采用不锈钢复合板制造,复层为厚2.0~3.2mm的405或410S型不锈钢,以抵抗腐蚀。
焦炭塔设计压力范围为0.2~0.8MPa,一般为0.25~0.35MPa。
操作温度为427~495℃。
焦炭塔外保温通常采用120~180mm的玻璃纤维或复合硅酸盐等保温材料,并用铝合金薄板或不锈钢薄板作为保护层。
压力安全阀位于焦炭塔顶部,料位测量通常采用三个中子料位计,安装于塔体外表面。
焦炭塔上封头过去大多采用球形封头,其优点是受力条件好,耗材少;但近来大都采用椭圆封头(2:1),其优点在于在保证塔顶标高不变的情况下(即钻杆长度不变)的情况下,能增加焦炭塔筒体段的有效体积。
以φ8800焦炭塔为例,将球形封头改为椭圆封头,能增加体积44.6米3。
焦炭塔下部进料口的接管的结构型式大致有三种,即从侧面进入、水平并呈向上倾斜方向进入和轴向进入。
操作经验表明,500℃左右的原料油从侧面进入焦炭塔会造成塔底加热不均匀,所引起的变形会促使塔体倾斜并产生裂纹、鼓胀和其它缺陷,将使塔的可靠性下降。
当原料油入口接管呈水平方向和呈向上倾斜方向配置时,对面的器壁受较强烈加热而产生附加的应力;若原料油在中心轴向进入,则可以保证设备均匀加热,焦炭塔操作的可靠性增大,这种结构设计使变形减少。
目前焦炭塔大都采用这种轴向进料方式。