风力发电机的故障处理
1.3 风力发电的优势
由于风电属于新能源,无论是技术还是成本,都和传统的水电、火电存在巨大差异,因此其要想快速发展,需要政策给予足够的扶持。
分析得知,风力发电具有如下优势:(1)风是由大气受到太阳辐射引起的空气对流,可以说是太阳能的另外形式。
风能是自然界的产物,不需要进行任何加工,也不会污染大气环境,可以直接拿来使用。
相较于火力发电,其具备可再生、无污染的优势。
(2)现阶段,风力发电机组已能批量生产,特别是风力发电技术成熟的国家,2MW、5MW这种容量较高的机组,已正式投入运行。
相较之下,我国的风力发电发展空间较大。
(3)风力发电占地面积小,建设周期短,成本低,发电量大,可灵活用于不同环境下,不受地形限制。
而且,随着科学技术的发展,可实现远程控制。
2.风力发电机组故障分析
2.1 发电机故障
在发电机运行过程,由于各方面的原因,产生各种故障。
无论其故障大小,都要采用有效措施消除,并在故障处理前切断机组电源,以免引发安全事故。
分析得知,发电机常见故障包括:(1)轴承发热或响声不正常。
润滑脂过多或不足,轴承磨损烧坏,润滑脂变质或含有异物,轴承内外圈松动等,都会导致轴承出现不正常的响动或发热。
(2)轴承漏油。
发生原因和润滑脂稀化,轴承发热,密封件间隙过大或损坏,润滑脂多等相关。
(3)发电机噪声或振动。
机组轴向串动,叶片角度不同,机组和发电机共振,安装不牢固,轴承损坏等,导致发电机频繁振动,出现巨大噪声。
(4)发电机失磁。
该故障发生后,会降低系统电压和定子电压,升高定子电流。
点亮失磁保护动作牌,使无功表指示负值,其他机组勉强动作。
(5)发电机着火。
发电机周围有焦味,端部空冷室有火光,發电机差动、接地等保护可能动作。
定子铁芯温度升高,表针摆动。
2.2 变桨系统故障一般来讲,变桨系统故障主要包括这几点:(1)变桨CANOpen通讯故障。
主控和变桨通讯的连接线路为:通讯CM202、太通讯防雷、主控重载、滑环、变桨重载B1、变桨防雷和EPEC控制,只要其中的任何线
路或元件出现问题,就会导致整个系统故障。
(2)变桨轴-驱动器故障。
变桨驱动器由轴模块、滤模块、电源模块共同组成,常见故障模块为轴模块。
(3)轴-变桨超时故障。
分析得知,该故障的发生原因和驱动器输出电压低、电机编码器出现问题、变桨电机自身问题相关。
2.3 变流器系统故障
在变流器系统运行过程中,常见故障主要包括:(1)变流器CANOpen 通讯故障。
由于风机主控、控制器通讯中断,导致风机控制器发出变流器通讯故障的警告。
分析得知,该故障和通讯线虚接、通讯参数设置错误、串口引脚焊接错误等因素相关。
(2)变流器跳闸。
如果变流器风机主控未向变流器发出脱网的指令,而是由控制器直接发出指令,就会在检测到变流器脱网的情况下发出故障跳闸,其原因和变流器侧故障、风机侧故障、外部环境不良相关。
(3)并网超时。
当发电机转速超过1250转后,风机主控就会发出指令启动变流器,随后并网闭合开关。
通常情况下,并网超时故障由风速不稳、变流器充电回路故障、并网开关故障、功率模块内部故障相等因素所致。
2.4 偏航系统故障
在风力发电机组运行过程中,偏航系统故障是常见现象,主要表现为:(1)偏航噪音大。
在偏航系统运转期间,通常会产生一定的噪音,如果噪音偏大,不但会产生强烈的振动,还会影响整个机组的安全性。
该现象的发生和驱动小齿轮、轴承齿圈啮合异常,偏航制动器和制动盘摩擦,机械结构件干扰等因素相关。
(2)偏航减速齿轮箱打齿。
现如今,虽然偏航驱动齿轮箱已国产化,产品质量也趋于稳定,但仍有个别发电机存在驱动齿轮箱打齿的现象,发生原因和偏航制动时受外界荷载冲击、齿轮加工或加热产生缺陷、齿轮箱渗漏油相关。
(3)轴承断齿及滚道脱落。
受驱动齿轮加工、冲击等因素影响,使偏航轴承齿圈出现缺陷,从而引发断齿、滚道脱落的问题。
(4)制动盘磨损。
偏航制动器偏航压力大,长时间磨损使得制动盘不满足制动器需求;制动器摩擦片长时间磨损,导致液压缸和制动器直接接触,造成制动盘严重磨损。
3.风力发电机组故障处理措施
3.1 发电机故障处理
针对发电机的故障处理,主要表现为这样几点:(1)清除或补充润滑
脂,清洗或更换轴承,紧固圆螺母、螺栓。
(2)加厚或更换密封件,更换轴承,及时排除轴承发热故障。
(3)让发电机在规定功率内运行,检查垫片,发现破损后及时更换。
调整发电机的振动周期,修理或更换破损的零部件。
(4)发电机失磁由FMK误跳所致,而发变组出口开关未跳闸,应立即解除开关联跳压板,试合FMK开关。
若该开光无法合上,需要通知值长停机。
另一方面,发电机失磁保护动作,灭磁开光跳闸,可按照发变组出口开光跳闸处理。
(5)当发电机着手时,即刻拉开FMK开关、发电变组出口开关,保证发电机转速为每分钟300转。
用灭火器灭火,继续运行冷水,直到火灾扑灭。
灭火过程中,同样要维持每分钟300转的转速。
3.2 变桨系统故障处理变桨系统故障的处理,可从这样几点进行:(1)检查轴承表面和密封性,查看是否出现腐蚀、噪声、断齿等情况,发现后及时修补,或更换变桨轴承。
加大巡检力度,定期保养和维护,同时加注润滑油脂。
(2)定期检查齿轮箱的油位是否正常、是否漏油、油色是否浑浊等,手动变桨查看是否卡涩。
(3)为规避滑环转换器故障问题,保证润滑性、低电阻,需要定期添加润滑剂,日常维护时清理内部污物,并紧固接线。
一旦滑环转换器破损,立即进行更换,同时在送电前进行绝缘电阻测试。
3.3 变流器系统故障处理对于变流器系统的故障处理,可从以下几点着手:(1)检查主控和变流器通道线缆是否压好,及时更换控制板变流器I/O扩展板,检查电机负载是否过大,变流器转矩参数是否合理。
(2)提示驱动板连接错误时,首先手动暂停风机,然后将变流器电源关掉,打开变流器的1号柜和2号柜,取下驱动线,清理插座和插头灰尘,最后重新插上开启。
(3)检查风扇是否正常运行,如果不能使用,即刻和厂家联系更换;如果风扇可正常运行,且没有任何故障,应检查1号柜的反馈线是否正常,如若线路也正常,可更换转子侧电路板。
3.4 偏航系统故障处理为预防偏航系统故障的发生,在設置制动器偏航压力时,应结合风电场实际,明确偏航压力值。
在摩擦片使用之前,对其进行充分的检验。
在设计偏航制动盘时,应确保表面粗糙度满足要求。
加大产品生产过程的管控力度,尤其是关键的工艺流程。
为保证整个机组偏航的稳定性,应选择合适的制动力矩。
对于偏航轴承而言,设计期间除要考虑轴承关键部位的安全系数
外,还要根据风电场的具体情况,对轴承的疲劳寿命、承载能力进行仿真实验和分析,保证滚道润环良好。
同时,严格把控产品的加工流程,提高轴承的可靠性。
为防止制动盘磨损,应合理设计制动压力,选用耐磨性好的材料,检查现场巡检,及时更换受损的摩擦片,以免影响整个偏航系统的运行。