当前位置:文档之家› 第10次课压气机(3)

第10次课压气机(3)

目的:当压气机在非设计状态工作时,通过改变叶片角度(或叶身 扭转)来使压气机进口预旋量相应改变,使第一级转子叶片进口气流 的攻角恢复到接近设计状态的数值,消除了叶背上的气流分离,避免 喘振。
航空发动机原理和结构
2、旋转一级或数级导流叶片(可调静子叶片) 进口可转的导流叶片或变弯度导流叶片
航空发动机原理和结构
29
航空发动机原理和结构
4、双转子或三转子压气机
为了解决压气机增压比和风扇转速的矛盾,人们很 自然的想到了三转子结构。所谓三转子就是在双转子发 动机上又多了一级风扇转子。这样,风扇、低压压气机 和高压压气机都自成一个转子,各自都有各自的转速。 因此,设计师们就可以相对自由地设计发动机风扇转速、 风扇直径以及涵道比。而低压压气机的转速也就可以不 再受风扇的掣肘。
2 、 间隙控制装置
目的:减少叶尖漏气,进一步提高发动机的性机匣,外层承力件,内 层是压气机气流通道外廓,双层间形成环形腔。在发 动机不同状态下,向环形腔内通以不同温度和压力的 空气,与转子内腔配合,使机匣与转子的径向变形协 调一致,从而保证较小的间隙值。
优缺点:比较简单、效果好。 使用中不经济,需要把已经压缩过(10~25%)的空气放 到周围大气中去,损失了压缩这部分空气的机械功。不经 济。
航空发动机原理和结构
解决方法:1、中间级放气
放气活门
18
航空发动机原理和结构
放气带
19
航空发动机原理和结构
WP—6放气窗口
20
航空发动机原理和结构
2、旋转一级或数级导流叶片(可调静子叶片) 进口可转的导流叶片或变弯度导流叶片
航空发动机原理和结构
一、压气机喘振
压气机喘振是气流沿压气机轴向发生的 低频率、高振幅的气流振荡现象,它产生 很大的激振力,导致强烈的机械振动,破 坏性很大。
4
航空发动机原理和结构
压气机喘振的主要特征
音调低而沉闷; 非常强烈的机械振动; 转速不稳定; 推力突然下降并大幅波动。 压气机出口总压和流量大幅度波动;
32
航空发动机原理和结构
4、双转子或三转子压气机
为了千方百计提高压气机的喘振裕度,除了采用双 转子压气机外,中间级放气以及机匣处理等措施已逐渐 被广泛运用。在很多现代化的发动机上人们都保留了放 气活门以备不时之需。比如在JT9D涡扇发动机上,普拉 特·惠特尼公司就分别在高、低压压气机的第4、9、15 级上保留了三个放气活门。"昆仑"发动机也采用了先进 的机匣处理措施,以及数字式防喘控制系统。
航空发动机原理和结构
13
航空发动机原理和结构
喘振机理 当多级轴流式压气机中的某些级产生旋转失速并进一
步发展时,压气机整个通道受阻,阻碍前方气流流入,使 气流拥塞在这些级的前方。与此同时,由于前方气流暂时 堵塞,出口反压不断下降,当出口反压比较低时,压气机 堵塞状况被解除,被拥塞的气流克服了气体惯性一拥而下, 于是进入压气机的空气流量又超过了压气机后方所能排泄 的流量,压气机后方空间里的空气又“堆积”起来,反压 又急剧升高,造成压气机内气流的再次分离堵塞。
航空发动机原理和结构
第五节 压气机气流控制系统 一般组成:
放气系统(起动放气,程序放气,打开反推放气) 可变静子叶片系统
航空发动机原理和结构
第六节 压气机附属装置
1、 封气装置 2 、间隙控制装置 3 、防冰系统
航空发动机原理和结构
1、 封气装置
目的:避免压气机转子和静子之间的级间漏 气损失,提高压气机效率。 有效措施:减少漏气面积和减少压力差 密封装置分类 接触式:涨圈式密封 非接触式:
热空气、滑油和电加热混合型防冰
航空发动机原理和结构
航空发动机原理和结构
不需要采用防冰措施
航空发动机原理和结构
第七节 离心压气机
离心式压气机由导风轮、叶轮、扩压器等组成(下图)。
52
航空发动机原理和结构
第七节 离心压气机
空气由进气道进入压气机、经过与叶轮一起旋转的 导风轮的导引进入叶轮。在高速旋转叶轮作用下,空气 由叶轮中心被离心力甩向叶轮外缘,压力也逐渐提高, 由叶轮流出的空气进入扩压器后速度降低,压力再次提 高,最后由出气管流出压气机。
53
航空发动机原理和结构
第七节 离心压气机
航空发动机原理和结构
第七节 离心压气机
离心式压气机的空气流量为数公斤至数十公斤每秒。 亚音速离心式压气机的增压比约为4.5,超音速离心式压气 机可达8~10,效率约为0.78。
55
航空发动机原理和结构
第七节 离心压气机
离心式压气机的特点及应用
与轴流压气机相比具有迎风面积尺寸大、效率低的特点 不宜用于高速飞行的大推力发动机上
30
航空发动机原理和结构
4、双转子或三转子压气机
为了解决压气机增压比和风扇转速的矛盾,人们很 自然的想到了三转子结构。所谓三转子就是在双转子发 动机上又多了一级风扇转子。这样,风扇、低压压气机 和高压压气机都自成一个转子,各自都有各自的转速。 因此,设计师们就可以相对自由地设计发动机风扇转速、 风扇直径以及涵道比。而低压压气机的转速也就可以不 再受风扇的掣肘。
航空发动机原理和结构
航空发动机原理和结构
航空发动机原理和结构
二、喘振的产生
喘振是发动机的一种不正常的工作状态,是由压气 机内的空气流量和压气机转速偏离设计状态过多而引 发的。喘振是发动机的致命故障,严重时可能导致发 动机空中停车甚至发动机损坏。衡量发动机喘振性能 的指标叫做"喘振裕度",就是说发动机的进气口流量 变化多少会引发喘振,这个值一般都要求达到15%甚 至 20%以上。
被动间隙控制:
双层机匣采用特殊结构(悬臂式机匣,环形顶板 缓冲器)
隔热材料和隔热罩
航空发动机原理和结构
航空发动机原理和结构 第六节 压气机附属装置
防冰系统
当飞机穿过含有冷水汽的云层,或在空气湿度较 高和气温接近零度的条件下工作时,发动机进口 部分,就会出现结冰现象。
防冰方法
对容易结冰的零件表面进行加温。 常用热源有:压气机热空气、电加热和滑油加热。
28
航空发动机原理和结构
4、双转子或三转子压气机
然而双转子结构的发动机也并不是完美的。在双转子 结构的涡扇发动机上,由于风扇通常和低压压气机联动, 风扇为了迁就压气机而必须在高转速下运行,高转速带来 的巨大离心力就要求风扇的叶片长度不能太大,涵道比自 然也上不去,而涵道比越高的发动机越省油。低压压气机 为了迁就风扇也不得不降低转速和单级增压比,单级增压 比降低的后果就是不得不增加压气机的级数来保持一定的 总增压比。这样一来压气机的重量就难以下降。
将压气机分成两个或三个转子,分别由各自的涡轮来带动,使
得一台高增压比的压气机成为两个或三个低增压比的压气机。
航空发动机原理和结构
4、双转子或三转子压气机
为了提高压气机的工作效率并增加发动机喘振裕度, 人们想到了用双转子来解决问题,即让发动机的低压压气 机和高压压气机工作在不同的转速之下,这样低压压气机 与低压涡轮联动形成低压转子,高压压气机与高压涡轮联 动形成高压转子。由于低压压气机和高压压气机分别装在 两个同心的传动轴上,当压气机的空气流量和转速前后矛 盾时,它们就可以自动调节,推迟了前面各级叶片上的气 流分离,从而增加了喘振裕度。
航空发动机原理和结构
功角: i

1k

1
1k>1正 功 角
1k<1负 功 角
1k 1零 功 角
航空发动机原理和结构
w1 -i
+i
w1 w1
u
i 1c 1
当流量减小时:i 1c 1产生正攻角,叶背分离 当流量增大时:i 1c 1产生负攻角,叶盆分离
航空发动机原理和结构
二、喘振的产生
喘振的根本原因是由于气流攻角过大,在叶背处发生分
离,而且这种气流分离扩展到整个叶栅通道。此时压气机叶 栅完全失去扩压能力,不能将气流推向后方,克服后面较强 的反压,于是流量急剧下降。由于动叶叶栅失去扩压能力, 后面的高压气体倒流至前面,造成压气机后面的反压降的很 低,整个压气机流路瞬间变得通畅;由于压气机仍保持原来 的转速,大量的气流被重新吸入压气机,流入动叶的气流负 攻角很快增加到设计值,压气机后面也建立起高压气流,这 时喘振过程中气流重新吸入状态。然而发生喘振的流动条件 没有改变,随着压气机后面的反压不断升高,压气机流量又 开始减小,喘振再次发生,如此反复。
航空发动机原理和结构
航空发动机核心机 压气机
1
航空发动机原理和结构
主要内容
第一节 概述 第二节 压气机工作原理 第三节 压气机构造 第四节 压气机防喘措施 第五节 压气机气流控制系统 第六节 压气机附属装置 第七节 离心式压气机
2
航空发动机原理和结构
第四节 压气机防喘措施
压气机喘振的定义 产生喘振的机理 防喘措施
具有特性平缓、结构简单、工艺性好等优点 在早期中小推力发动机以及近期小型发动机上得到了应 用
篦齿封严 蜂窝封严 石墨+篦齿 刷式封严
航空发动机原理和结构
1、 封气装置
航空发动机原理和结构
1 、 封气装置
航空发动机原理和结构
各种不同的典型密封装置
1. 封 气 装 置
航空发动机原理和结构
1. 封 气 装 置
各种不同的典型密封装置
航空发动机原理和结构
蜂窝封严和刷式封严
航空发动机原理和结构
31
航空发动机原理和结构
4、双转子或三转子压气机
但和双转子发动机相比,三转子发动机的结构进一 步变得复杂。三转子发动机有三个相互套在一起的共轴 转子,支撑结构更加复杂,轴承的润滑也更加困难。三 转子发动机比双转子发动机多了很多工程上的难题,可 是英国的罗尔斯·罗伊斯公司还是对它情有独钟。 罗·罗公司的RB-211涡扇发动机上用的就是三转子结构, 转子数量的增加带来了风扇、压气机和涡轮的优化。该 型发动机装备在许多型号的客机上。
相关主题