光学全息
4、基元全息图分析
全息图可看作是很多基元全息图的线性组合,了解基元全息图的结构和
作用对于深入理解整个全息图的记录和再现机理非常有益。 空域方法是把物体看作一些相干点源的集合,物光波前是所有点源发出的 球面波的线性叠加。每一个点源发出的球面波与参考波干涉,记录的基元 全息图称为基元波带片; 频域方法是把物光波看作由很多不同方向传播的平面波分量的线性叠加, 每一个平面波分量与参考平面波干涉而记录的基元全息图称为基元光栅。
1 z0 2 zc
1
5、几种不同类型的全息图
全息图的种类繁多,有很多不同的分类方法:
根据记录介质的相对厚度,可分为平面全息图和体全息图; 根据对照明光波的调制作用,可分为振幅全息图和位相全息图; 根据物光和参考光的相对方位,可分为同轴全息图和离轴全息图; 根据再现时照明光源和观察者在全息图的两侧还是同一侧,可分为透射全息图
40多年来,全息学科和技术得到飞速发展,高科技、国防、 艺术等领域几乎无所不及。
1、引言
全息发展的四个阶段
第一阶段 汞灯作光源,同轴全息图
—— 萌芽阶段 第一代全息 第二阶段 激光记录,激光再现,离轴全息图 ——第二代全息* 第三阶段 激光记录,白光再现 ——第三代全息* 第四阶段 白光记录,白光再现 ——第四代全息
和反射全息图;
根据记录物体与照相干板的相对距离,分为菲涅耳全息图和夫朗和费全息图; 根据制作时使用光源的性质,可分为连续波激光全息图和脉冲激光全息图。
5、几种不同类型的全息图
5.1 傅里叶变换全息图
利用透镜的傅里叶变换性质产生物体的频谱,并引入参考波与之 干涉,就得到了傅里叶变换全息图,其记录光路如下图所示。
波前记录
其中,=sin/,参考波的空间频率。
波前再现
3、同轴全息图与离轴全息图
从频率域的角度考虑离轴全息图。假定物体最高空间频率为fM周/mm,则 如下图:U3和U4的频谱G3和G4分别位于(0,)和(0,-)处。
为使成像光波和晕轮光U2有效分离,G2、G3和G4之间不能重叠,则必须满 足条件: 3 f M 或 sin 3 f M
1
2 2 1 z0 1 zr
公式正负号中上面一组符号对应于U3,下面一组符号对应于U4。
可根据像点位臵判断像的虚实。像点与物点在全息图同一侧,得虚像; 否则得实像。像的横向放大倍数为
dx dy z z M i i 2 i 1 0 dx0 dy0 1 z0 zr
平面波照明位于透镜前焦面的物体(透明片),同一平面上,离开光轴距离为b 处有一相干的参考点源。前焦面上总的光场为
U x0 , y0 g x0 , y0 r0 x0 , y0 b
根据透镜的傅里叶变换性质,后焦面上的光场为
U f x , f y G f x , f y r0 exp j 2 bf y
U4 x, y RO*R R2O* x, y
不考虑常数因子的影响,U3是原始物光波的准确复现,给出物体的一个虚像; O*是物光波前的共轭,若原始物波是发散的,则共轭光波是会聚的,因此U4 的传播将给出物体的一个实像。此时,虚像没有变形,而实像有变形。
2、波前记录与再现
思考题:P290 -7.1 若一个平面物体的全息图记录在与物体平行的记录介质上, 证明再现像将成在与全息图平行的平面内(为简单起见,假 定参考波为平面波)。
3、同轴全息图与离轴全息图
只有使全息图衍射光波中各项有效分离,才能得到可供利用的再现像, 这与参考光方向的选取有直接的联系。下面分两种情况讨论: 3.1 同轴全息图
1、引言
全息图的基本类型
1.同轴全息图 2.离轴全息图 3.菲涅耳全息图 4.傅里叶变换全息图 5.像全息图 6.模压全息 7.位相全息 8.彩虹全息图 9.体积全息图 10.计算全息
全息术的应用
1.全息显示 2.模压全息 3.全息光学元件 4.全息干涉计量 5.全息信息存储
2、波前记录与再现 全息成像过程
1962年
U.Denisyuk 提出反射全息图的方法;
1、引言
1964年
Ar+ Laser 问世 —— 布里奇斯 氩离子激光器提供了短波长连续可见光,扩展
了全息技术 的应用范围 R.L.鲍威尔,K.A.斯特特森 提出全息干涉术; S.A.本顿 发明彩虹全息术(白光全息术);
1965年 1968年 ......
U t x, y C0tb C0 O C0 r0O C0 r0O*
2
b) 同轴全息图的波前再现
物光和参考光都来自同轴,全息图透射光波中包含的四项都在同一方向传播,
无法分离;
在全息图的两侧距离为z0的对称位臵产生物体的实像和虚像,成为孪生像;但
观察某一像时,会受到另一离焦的孪生像的干扰;
Dennis Gabor 提出 光源:汞灯
“波前重现” 理论
目的:改善电子显微镜的分辨率
效果:因光源相干性差,效果很不明显 1960年
激光器 问世, 提供 理想的相干光源
为全息技术的发展创造了条件
1962年
离轴全息图问世 ——E.N.Leith和J.Upatnieks
提出“斜参考光法”, 加速了全息术的发展
1、波前记录— 用干涉法记录物光波
干涉图样的记录
2、波前再现— 用衍射法再现物光波
2、波前记录与再现
2.1 波前记录
假定记录介质H位于xy平面上,物光波前
在H上产生的复振幅分布为
O x, y O0 x, y e j0 x , y
引入一相干参考波,该参考波在H上产生 的复振幅分布为
照明时,如右图所示,在透过全息图的光 场中,有两个场分量能再现成像,像的坐 标为
x xi c zc y yi c zc 1 zi zc
2 x0 2 xr 1 z0 1 zr
zi 2 y0 2 yr z 1 z0 1 zr i
全息图的透射光场分布为
U t x, y Ct x, y Ctb C O COR* CO* R U1 U 2 U 3 U 4
2
若采用参考光波照射全息图,即C(x,y)=R(x,y),则 2 U 3 x, y ROR* R O x, y
若采用共轭参考光照明全息图,即C(x,y)=R*(x,y),则
U3 x, y R*OR* R*2O x, y
U 4 x, y R*O* R R O* x, y
2
U3和U4仍正比于物光波前或其共轭,将分别产生虚像和实像; 此时,虚像有变形,实像没有变形。
a) 同轴全息图的波前记录
伽柏全息图就是一种同轴全息图,参考光和物光都沿着光轴的方向。假设用相干 平面波照明一高度透明的物体,其复振幅透过率可表示为
t x0 , y0 t0 t x0 , y0
由t0透过的均匀平面波作参考光,而t项所产生的衍射光作物光O(x,y),则两者在 胶片上的曝光强度为 2
(t0和都是常数)
若假定参考光强在H表面上是均匀的,则
t x, y tb O OR* O* R
2
2、波前记录与再现
2.2 波前再现
用参考波照明
用共轭参考波照明
2、波前记录与再现 用相干光波照射全息图,假定它在全息图平面上的复振幅分布为C(x,y),
R x, y r0 x, y e jr x, y
那么,两波相遇叠加的总光场是
U x, y O x, y R x, y
对应的强度分布为
I x, y U x, y O x, y R x, y O x, y R* x, y O* x, y R x, y
2、波前记录与再现
波前记录是一种干涉效应,它使振幅和位相调制信息变换为干
涉图的强度调制信息; 波前再现是一种衍射效应,胶片经过线性处理后,使全息图上 的强度调制信息还原为波前的振幅和位相调制信息。
既然全息术基于光的干涉和衍射现象,系统就应满足一定的相
干性要求,例如激光输出波长稳定、曝光期间装臵稳定、两束光 的最大光程差应比光的相干长度小得多等。
3、同轴全息图与离轴全息图
3.2 离轴全息图 透射光波为:
U t x, y C0tb C0 O
2
C0r0O x, y exp j 2 y
C0r0O* x, y exp j 2 y
U1 U 2 U3 U 4
现代 光学
信息光学 (傅里叶光学) 非线性光学 (强光光学)
为提高电子显微镜分辨本领,伽伯(D.Gabor,1900—1979)
在1948年提出了全息术原理,并开始了全息照相(holography)的 早期研究工作,并因此在1971年获得诺贝尔物理学奖。
1、引言
全息技术的典型代表—全息照相
波前记录— 用干涉法记录物光波
x x0 2 y y0 2 O x, y O0 exp j 1 z0
4、基元全息图分析
这样制成的全息图,当用另一波长2,位于 点源(xc,yc,zc)发出的球面波
x xc 2 y yc 2 U c x, y C0 exp j 2 zc
I x, y r0 O x0 , y0 r02 O r0O r0O*
2
3、同轴全息图与离轴全息图
经过显影、定影后,负片的复振幅透过率就正比于曝光强度,即
t x, y tb O r0O r0O*
2