当前位置:文档之家› 水生植物对水体的处理作用及应用

水生植物对水体的处理作用及应用

人类的活动会使大量的工业、农业和生活废弃物排入水中,使水受到污染。

水污染可根据污染杂质的不同而主要分为化学性污染、物理性污染和生物性污染三大类,基本上以化学性污染为主。

具体污染杂质有无机污染物质、无机有毒物质、有机有毒物质、植物营养物质等。

而对于这些污染物的清除,水生植物起着非常重要的作用。

水生植物指生理上依附于水环境、至少部分生殖周期发生在水中或水表面的植物类群。

水生植物大致可区分为四类:挺水植物、沉水植物、浮叶植物与漂浮植物。

而大型水生植物是除小型藻类以外所有水生植物类群。

水生植物是水生态系统的重要组成部分和主要的初级生产者,对生态系统物质和能量的循环和传递起调控作用。

它还可固定水中的悬浮物,并可起到潜在的去毒作用。

水生植物在环境化学物质的积累、代谢、归趋中的作用也是不可忽视的。

用水生植物来监测水生污染、对污染物进行生态毒理学评价及其进入生物链以后的生物积累、修饰和转运,对植物生态的保护和人畜健康方面有非常重要的意义。

1水生植物对污染物的清除1.1水生植物对氮磷的清除湖泊富营养化已成为一个世界性的环境问题。

利用水生大型植物富集氮磷是治理、调节和抑制湖泊富营养化的有效途径之一。

湖泊水环境包括水体和底质两部分,水体中的氮磷可由生物残体沉降、底泥吸附、沉积等迁移到底质中。

对过去的营养状况的追踪表明,水生植物可调节温度适中的浅水湖中水体的营养浓度。

而大型沉水植物则通过根部吸收底质中的氮磷,从而具有比浮水植物更强的富集氮磷的能力。

沉水植物有着巨大的生物量,与环境进行着大量的物质和能量的交换,形成了十分庞大的环境容量和强有力的自净能力。

在沉水植物分布区内,COD、BOD,总磷、铵氮的含量都普遍远低于其外无沉水植物的分布区。

而漂浮植物的致密生长使湖水复氧受阻,水中溶解氧大大降低,水体的自净能力并未提高,且造成二次污染,影响航运。

挺水植物则必须在湿地、浅滩,湖岸等处生长,即合适深度的繁衍场所,具有很大的局限性。

不同的沉水植物对水体中的总氮、总磷均有显著的去除作用。

在关于常见沉水植物对滇池草海水体(含底泥)总氮去除速率的研究中发现:物种去除能力的大小顺序依次为:伊乐藻>苦草>狐尾藻>篦齿眼子菜>金鱼藻>菹草>轮藻。

随着时间的延长,水体中总氮浓度呈负指数形式衰退,且在实验的总氮浓度范围内(2.628~16.667mg/L)每种沉水植物的去除速率随总氮浓度的增加而增加。

此外,黑藻(Hydrilla verticillata(L.f.)Royle)对磷的需求较低,并可利用重碳酸盐作为光合作用的碳源。

磷吸收是主动过程。

在亚热带湿地中,磷主要是在植物内流动,而氮主要是通过沉积作用和反硝化作用进行流动。

对于夏季浮游植物(主要是外来蓝藻),磷是限制因子。

据推测:磷循环强烈依赖于大型植物的调节;底泥中磷的衰竭影响植物香蒲(Typha domingensis)的减少,而随后磷的有效性的增加又使其重现。

在对东湖的围隔实验中,结果显示了沉水植物在磷营养滞留物中的关键地位。

沉水植物均能从水生植物对水体的处理作用及应用林鸿金晶姚雄张晶晶陶秋莲(武汉市园林科学研究所430081)摘要:水生植物是湿地的重要组成部分,也是水体生态系统最重要的部分。

水体中的污染物在水生植物的作用下可被吸收和富集,从而改善水质。

本文就水生植物对水体中污染物的处理及水生植物的应用进行了探讨。

关键词:水生植物;污染物;水体;应用叶、根状茎(主要是叶)来去除水中的标记碳,从而促进了流水生境中碳的吸收、迁移和释放。

淡水沉水植物系统对营养物的去除有很好的作用:对氮主要是通过反硝化作用,对磷则是生物吸收和随后的植株收获。

1.2水生植物对重金属的清除水生植物对重金属Zn、Cr、Pb、Cd、Co、Ni、Cu等有很强的吸收积累能力。

众多的研究表明,环境中的重金属含量与植物组织中的重金属含量成正相关,因此可以通过分析植物体内的重金属来指示环境中的重金属水平。

戴全裕在20世纪80年代初从水生植物的角度对太湖进行了监测和评价,认为水生植物对湖泊重金属具有监测能力。

水生大型植物以其生长快速、吸收大量营养物的特点,为降低水中重金属含量提供了一个经济可行的方法。

例如可以通过控制浮萍(Lemna minor)的浓度,使有机和金属工业废物的含量降低到最小。

在室内实验中,浮萍(Lemna gibba)可大幅度降低废水中的铁和锌,对锰的去除效率达100%。

浮萍对重金属的富集程度超过了藻类和被子植物(Azolla filliculoides),尤其是锌的富集系数很高,植株内的浓度比外面培养基内高2700倍。

重金属在植物体内的含量很低,且极不均匀。

在同一湖泊中,不同种类的水生植物含量差别很大;同一种类在不同湖泊中,水生植物体内的重金属含量相差也很大。

水生植物的富集能力顺序一般是:沉水植物>浮水植物>挺水植物。

植物对重金属的吸收是有选择性的。

当必需元素Zn和Cd与硫蛋白中巯基结合时,Cd可以置换Zn。

所以Zn/Cd值是一个反映植物积累能力的很好指标,同时也间接地指示了对植物的破坏程度。

实验证明,沉水植物和浮水植物尽管能够吸收很多重金属,特别是Cd的吸收,但是这种吸收不断增加会导致营养元素的丧失,如果程度严重,会导致植物死亡。

所以沉水植物和浮水植物适合在低污染区域作为吸收重金属的载体,同时可以监测水体重金属含量。

金属不同于有机物,它不能被微生物所降解,只有通过生物的吸收得以从环境中除去。

植物具有生物量大且易于后处理的优势,因此利用植物对金属污染位点进行修复是解决环境中重金属污染问题的一个很重要的选择。

植物对重金属污染位点的修复有三种方式:植物固定,植物挥发和植物吸收。

植物通过这三种方式去除环境中的金属离子。

有关水生植物对放射性核素的积累也有报道,如Whicker等发现水生大型植物石莲花(Hydrocotyle spp.)比其他15种水生植物积累137Cs和90Sr的能力强。

用狐尾藻(Najas graminea Del.)吸收铜、铅、镉、镍等金属发现,吸收过程在约0.01min-1恒定速率下与Lagergren动力模型相关,同时平衡结果和朗缪尔(Langmuir)吸收等温线相关。

1.3水生植物对有毒有机污染物的清除植物的存在有利于有机污染物质的降解。

水生植物可能吸收和富集某些小分子有机污染物,更多的是通过促进物质的沉淀和促进微生物的分解作用来净化水体。

农业污染是一种“非点状源”的污染,大多数农业污染物包括来自作物施肥或动物饲养地的氮磷以及农药等。

对除草剂莠去津来说,它在环境中大量存在,小溪中一般为1~5μg/L,含量较高时为20μg/L,而靠近农田的区域达500μg/L,甚至1mg/L。

水生大型植物常生长在施用点附近,农药浓度很高,暴露时间很长,所以水生大型植物和浮游植物对于莠去津比无脊椎动物、浮游动物和鱼类更敏感。

高等植物虽不能矿化莠去津,但可以用不同的途径来修饰。

Zablotowics等在研究藻类对伏草隆的降解中发现,纤维藻和月芽藻能使阿特拉津去烃基。

衣、绿藻属也能降解阿特拉津。

一种高忍耐性地衣(Parmelia sulcata Taylor)的藻层比率的变化可显示出当地空气污染的变化。

毒死蜱(chlorpyrifos)在伊乐藻(Elodea densa)和水体中的分布表明,水生植物可吸收有机成分并有将其从水生环境中去除的能力。

金鱼藻(Ceratophyllum demersum)对灭害威的吸着能力的研究中,生长活跃的小枝是老枝吸收的5倍。

膜构造及其完整性好象是重要的决定因子。

水生植物对RHC,DDT,PCBs残留的吸收和积累中,果实比植株,叶比根贮存更多。

某些植物也可降解TNT。

据Best等报道,对受美国依阿华陆军弹药厂爆炸物所污染的地表水进行水生植物和湿地植物修复的筛选与应用研究中发现,狐尾藻属植物(Myriophyllum aquaticum Vell verdc)的效果甚佳。

Roxanne等研究了受TNT污染地表水的植物修复技术,在所用浓度为1、5、10mg/kg 的土壤条件下,与对照相比,利用植物的降解,移除量可达100%。

William等研究了植物对三氯乙烯(TCE)污染浅层地下水系的气化、代谢效应,结果发现,污染场所中所有采集的植物样品都可检测出TCE的气化挥发以及3种中间产物。

Aitchison等发现,水培条件下杂交杨的茎、叶可快速去除污染物1,4-二氧六环化合物,8d内平均清除量达54%。

多环芳香烃化合物(PAHs)是一大类有机毒性物质。

在浮萍,紫萍,水葫芦,水花生,细叶满江红等5种水生植物中,均受到萘的伤害,随萘浓度的增加而伤害程度加深,其中水葫芦受害最轻,所以对萘污染的净化可作为首选对象。

而浮萍的敏感性最大,可用作萘对水生植物的毒性检测。

此外水生植物也可有效消除双酚、酞酸酯等环境激素和火箭发动机的燃料庚基的毒性。

浮萍(Lemna gibba)在8d 内把90%的酚代谢为毒性更小的产物。

COD的去除效率由对照组的52~60%上升为74~78%。

铬,铜,铝等金属的存在也可不同程度地影响浮萍对COD的去除效率。

1.4水生植物与其他生物的协同作用对污染物的清除根系微生物与凤眼莲等植物有明显的协同净化作用。

一些水生植物还可以通过通气组织把氧气自叶输送到根部,然后扩散到周围水中,供水中微生物,尤其是根际微生物呼吸和分解污染物之用。

在凤眼莲、水浮莲等植物根部,吸附有大量的微生物和浮游生物,大大增加了生物的多样性,使不同种类污染物逐次得以净化。

利用固定化氮循环细菌技术(Immobilized Nitrogen Cycling Bacteria,INCB),可使氮循环细菌从载体中不断向水体释放,并在水域中扩散,影响了水生高等植物根部的菌数,从而通过硝化———反硝化作用,进一步加强自然水体除氮能力和强化整个水生生态系统自净能力。

这对进一步研究健康水生生态系统退化的机理及其修复均具有重要意义。

水生大型植物能抑制浮游植物的生长,从而降低藻类的现存量。

在水生态环境中,水生高等植物对藻类的抑制作用较为明显。

主要表现在两个方面:一是藻类数量急剧下降;二是藻类群落结构改变。

水生植物与藻类在营养、光照、生存空间等方面存在竞争。

除人工控制和低温等条件下,一般是水生植物生长占优势。

水生植物与藻类之间的相生相克(异株克生现象)作用在污水净化和水体生态优化方面有重要应用潜力。

顾林娣等发现苦草能分泌生化抑制物质,且抑制作用的大小和种植水浓度呈正相关。

在浅水湖泊中种植苦草等高等植物,放养适量的鱼类,这样就既可以保护水质,又可以发展渔业生产,增加经济效益。

不仅如此,野外实验和实验室研究还表明,凤眼莲等水生植物还通过根系向水中分泌一系列有机化学物质。

这些物质在水中含量极微的情况下即可影响藻类的形态、生理生化过程和生长繁殖,使藻类数量明显减少。

相关主题