当前位置:文档之家› 物理竞赛中的数学知识

物理竞赛中的数学知识

物理竞赛中的数学知识一、重要函数 1. 指数函数2. 三角函数1-1y=sinx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyx1-1y=cosx-3π2-5π2-7π27π25π23π2π2-π2-4π-3π-2π4π3π2ππ-πoyxy=tanx3π2ππ2-3π2-π-π2oyx3. 反三角函数反正弦Arcsin x ,反余弦Arccos x ,反正切Arctan x ,反余切Arccot x 这些函数的统称,各自表示其正弦、余弦、正切、余切为x 的角。

二、数列、极限 1. 数列:按一定次序排列的一列数称为数列,数列中的每一个数都叫做这个数列的项。

排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n 项。

数列的一般形式可以写成 a 1,a 2,a 3,…,a n ,a (n+1),… 简记为{an },通项公式:数列的第N 项a n 与项的序数n 之间的关系可以用一个公式表示,这个公式就叫做这个数列的通项公式。

2. 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

通项公式a n =a 1+(n-1)d ,前n 项和11(1)22n n a a n n S n na d +-==+ 等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。

这个常数叫做等比数列的公比,公比通常用字母q 表示。

通项公式a n =a 1q (n-1),前n 项和11(1)(1)11nnn a a q a q S q q q--==≠--所有项和1(1)1n a S q q=<-3. 求和符号4. 数列的极限:设数列{}n a ,当项数n 无限增大时,若通项n a 无限接近某个常数A ,则称数列{}n a 收敛于A ,或称A 为数列{}n a 的极限,记作A a n n =∞→lim否则称数列{}n a 发散或n n a ∞→lim 不存在.三、函数的极限:在自变量x 的某变化过程中,对应的函数值f (x )无限接近于常数A ,则称常数A 是函数f (x )当自变量x 在该变化过程中的极限。

设f (x )在x>a (a >0)有定义,对任意ε>0,总存在X >0,当x>X 时,恒有| f (x )-A |<ε,则称常数A 是函数f (x )当x →+∞时的极限。

记为+∞→x lim f (x )=A ,或f (x ) → A (x →+∞)。

运算法则lim x x →[f (x )± g (x )]=0lim x x →f (x ) ±0lim x x →g (x )lim x x →[f (x ) ⋅ g (x )]=0lim x x →f (x ) ⋅0lim x x →g (x ))(lim )(lim )()(lim 00x g x f x g x f x x xx x x →→→=,其中0lim x x →g (x )≠ 0.四、无穷小量与无穷大量1.若0)(lim 0=→x f x x ,则称)(x f 是0x x →时的无穷小量。

(若,)(lim 0∞=→x g x x 则称)(x f 是0x x →时的无穷大量)。

或:若0lim x x →α(x )=0 ,则称α(x )当x → x 0时为无穷小。

在自变量某变化过程中,|f (x )|无限增大,则称f (x )在自变量该变化过程中为无穷大。

记为lim ().f x =∞2.无穷小量与无穷大量的关系无穷小量的倒数是无穷大量;无穷大量的倒数是无穷小量。

3.无穷小量的运算性质(i )有限个无穷小量的代数和仍为无穷小量。

(ii )无穷小量乘有界变量仍为无穷小量。

(iii )有限个无穷小量的乘积仍为无穷小量。

4.无穷小的比较定义:设0lim →x α (x )=0,0lim →x β (x )=0,1)若)()(lim0x x x αβ→=0,则称当x → x 0时β (x )是比α (x )高阶无穷小。

2)若)()(lim0x x x αβ→=∞,则称当x → x 0时β (x )是比α (x )低阶无穷小。

3)若)()(lim0x x x αβ→=C (C ≠0),则称当x → x 0时β (x )与α (x )是同阶无穷小,4)若)()(lim0x x x αβ→=1,则称当x → x 0时β (x )与α (x )是等价无穷小。

5.常用的等价无穷小为:当x →0时: sin x ~x ,tan x ~x ,arcsin x ~x ,arctan x ~x ,1-cos x ~221x , 11-+n x ~x n 1。

等价无穷小可代换五、二项式定理1. 阶乘: n!=1×2×3×……×n2. 组合数:从m 个不同元素中取出n (n≤m )个元素的所有组合的个数,叫做从m 个不同元素中取出n 个元素的组合数3. 二项式定理即六、常用三角函数公式sin (π+α)=-sinα cos (π+α)=-cosα tan (π+α)=tanα sin (π/2+α)=cosα cos (π/2+α)=—sinα tan (π/2+α)=-cotαsin()sin cos cos sin A B A B A B +=+ sin()sin cos cos sin A B A B A B -=- cos()cos cos sin sin A B A B A B +=- cos()cos cos sin sin A B A B A B -=+sin 22sin cos A A A = 2222cos 2cos sin 12sin 2cos 1A A A A A =-=-=- 22tan tan 21tan AA A=- 1cos sin22A A -= 1cos cos 22A A += 1cos sin tan 21cos 1cos A A A A A-==++ 和差化积公式sin sin 2sincos 22a b a b a b +-+=⋅ sin sin 2cos sin22a b a ba b +--=⋅ cos cos 2cos cos 22a b a b a b +-+=⋅ cos cos 2sin sin22a b a ba b +--=-⋅ ()sin tan tan cos cos a b a b a b++=⋅积化和差公式()()1sin sin cos cos 2a b a b a b =-+--⎡⎤⎣⎦ ()()1cos cos cos cos 2a b a b a b =++-⎡⎤⎣⎦ ()()1sin cos sin sin 2a b a b a b =++-⎡⎤⎣⎦ ()()1cos sin sin sin 2a b a b a b =+--⎡⎤⎣⎦万能公式22tan2sin 1tan 2aa a=+ 221tan 2cos 1tan 2a a a -=+ 22tan2tan 1tan 2aa a=-典型物理问题数列极限等应用1. 蚂蚁离开巢穴沿直线爬行,它的速度与到蚁巢中心的距离成反比,当蚂蚁爬到距巢中心距离L 1=1m 的A 点处时,速度是V 1=2cm/s 。

试问蚂蚁继续由A 点到距巢中心L 2=2m 的B 点需要多长时间? 2.m 1m 2m 3a 1a 2a 3常见近似处理1. 人在岸上以v 0速度匀速运动,如图位置时,船的速度是多少?2. 如图所示,顶杆AB 可在竖直滑槽K 内滑动,其下端由凹轮M 推动,凸轮绕O 轴以匀角速度ω转动.在图示的瞬时,OA=r ,凸轮轮缘与A 接触,法线n 与OA 之间的夹角为α,试求此瞬时顶杆AB 的速度.(第十一届全国中学生物理竞赛预赛试题)3.三个芭蕾舞演员同时从边长为L 的正三角形顶点A,B,C 出发,速率都是v ,运动方向始终保持着A 朝着B,B 朝着C,C 朝着A 。

经过多少时间三人相遇?每人经过多少路程?4. 如图所示,半径为R 2的匀质圆柱体置于水平放置的、半径为R 1的圆柱上,母线互相垂直,设两圆柱间动摩擦因数足够大,不会发生相对滑动,试问稳定平衡时,R 1与R 2应满足什么条件?5.一只狐狸以不变的速度1υ沿着直线AB 逃跑,一只猎犬以不变的速率2υ追击,其运动方向始终对准狐狸.某时刻狐狸在F 处,猎犬在D 处,FD ⊥AB ,且FD=L ,如图14—1所示,求猎犬的加速度的大小.解析:猎犬的运动方向始终对准狐狸且速度大小不变,故猎犬做匀速率曲线运动,根据向心加速度r ra ,22υ=为猎犬所在处的曲率半径,因为r 不断变化,故猎犬的加速度的大小、方向都在不断变化,题目要求猎犬在D 处的加速度大小,由于2υ大小不变,如果求出D 点的曲率半径,此时猎犬的加速度大小也就求得了. 猎犬做匀速率曲线运动,其加速度的大小和方向都在不断改变.在所求时刻开始的一段很短的时间t ∆内,猎犬运动的轨迹可近似看做是一段圆弧,设其半径为R ,则加速度 =a R22υ其方向与速度方向垂直,如图14—1—甲所示.在t ∆时间内,设狐狸与猎犬分别 到达D F ''与,猎犬的速度方向转过的角度为=α2υt ∆/R而狐狸跑过的距离是:1υt ∆≈L α 因而2υt ∆/R ≈1υt ∆/L ,R=L 2υ/1υ所以猎犬的加速度大小为=a R22υ=1υ2υ/L6.如图所示,半径为R ,质量为m 的圆形绳圈,以角速率ω绕中心轴O 在光滑水平面上匀速转动时,绳中的张力为多大?解析 取绳上一小段来研究,当此段弧长对应的圆心角θ∆很小时,有近似关系式.sin θθ∆≈∆ 若取绳圈上很短的一小段绳AB=L ∆为研究对象,设这段绳所对应的圆心角为θ∆,这段绳两端所受的张力分别为A T 和B T (方向见图14—3—甲),因为绳圈匀速转动,无切向加速度,所以A T 和B T 的大小相等,均等于T . A T 和B T 在半径方向上的合力提供这一段绳做匀速圆周运动的向心力,设这段绳子的质量为m ∆,根据牛顿第二定律有:R m T 22sin 2ωθ∆=∆;因为L ∆段很短,它所对应的圆心角θ∆很小所以22sin θθ∆=∆将此近似关系和πθπθ22∆=⋅∆⋅=∆m R m R m 代入上式得绳中的张力为πω22Rm T =7. 在某铅垂面上有一固定的光滑直角三角形细管轨道ABC ,光滑小球从顶点A 处沿斜边轨道自静止出发自由地滑到端点C 处所需时间,恰好等于小球从顶点A 处自静止出发自由地经两直角边轨道滑到端点C 处所需的时间.这里假设铅垂轨道AB 与水平轨道BC 的交接处B 有极小的圆弧,可确保小球无碰撞的拐弯,且拐弯时间可忽略不计. 在此直角三角形范围内可构建一系列如图14—4中虚线所示的光滑轨道,每一轨道是由若干铅垂线轨道与水平轨道交接而成,交接处都有极小圆弧(作用同上),轨道均从A 点出发到C 点终止,且不越出该直角三角形的边界,试求小球在各条轨道中,由静止出发自由地从A 点滑行到C 点所经时间的上限与下限之比值. 解析 直角三角形AB 、BC 、CA 三边的长分别记为 1l 、2l 、3l ,如图14—4—甲所示,小球从A 到B 的时间 记为1T ,再从B 到C 的时间为2T ,而从A 直接沿斜边到C所经历的时间记为3T ,由题意知321T T T =+,可得1l :2l :3l =3:4:5, 由此能得1T 与2T 的关系.因为21121121T gT l gT l ==所以21212T T l l = 因为1l :2l =3:4,所以 1232T T =小球在图14—4—乙中每一虚线所示的轨道中,经各垂直线段所需时间之和为11T t =,经各水平段所需时间之和记为2t ,则从A 到C 所经时间总和为21t T t +=,最短的2t 对应t 的下限min t ,最长的2t 对应t 的上限.m ax t小球在各水平段内的运动分别为匀速运动,同一水平段路程放在低处运动速度大,所需时间短,因此,所有水平段均处在最低位置(即与BC 重合)时2t 最短,其值即为2T ,故min t =.35121T T T =+2t 的上限显然对应各水平段处在各自可达到的最高位置,实现它的方案是垂直段每下降小量1l ∆,便接一段水平小量2l ∆,这两个小量之间恒有αcot 12l l ∆=∆,角α即为∠ACB ,水平段到达斜边边界后,再下降一小量并接一相应的水平量,如此继续下去,构成如图所示的微齿形轨道,由于1l ∆、2l ∆均为小量,小球在其中的运动可处理为匀速率运动,分别所经的时间小量)(1i t ∆与)(2i t ∆之间有如下关联:αcot )()(1212=∆∆=∆∆l l i t i t于是作为)(2i t ∆之和的2t 上限与作为)(1i t ∆之和的1T 之比也为.cot α故2t 的上限必为1T αcot ,即得:.37cot 111max T T T t =+=α这样:max t min t =7:5求导与微分一、导数的概念1.导数定义设y=f(x)在x 0的某邻域内有定义,在该邻域内给自变量一个改变量x ∆,函数值有一相应改变量)()(00x f x x f y -∆+=∆,若极限x x f x x f x y x x ∆-∆+=∆∆→∆→∆)()(limlim0000 存在,则称此极限值为函数y=f(x)在x 0点的导数,此时称y=f(x)在x 0点可导,用⎥⎦⎤⎢⎣⎡===''000)(,,)(x x dx x df x x dyx dyx x y x f 或或或表示.若)(x f y =在集合D 内处处可导(这时称f(x)在D 内可导),则对任意D x ∈0,相应的导数)(0x f '将随0x 的变化而变化,因此它是x 的函数,称其为y=f(x)的导函数,记作⎪⎭⎫⎝⎛''dx x df dxdy y x f )(,,)(或或或. 2.导数的几何意义若函数f(x)在点x 0处可导,则)(0x f '就是曲线y=f(x)在点(x 0,y 0)处切线的斜率,此时切线方程为))((000x x x f y y -'=-.当)(0x f '=0,曲线y=f(x)在点(x 0,y 0)处的切线平行于x 轴,切线方程为)(00x f y y ==. 若f(x)在点x 0处连续,又当0x x →时∞→')(x f ,此时曲线y=f(x)在点(x 0,y 0)处的切线垂直于x 轴,切线方程为x=x 0.1.几个基本初等函数的导数 ⑴()0c '= ⑵1x xμμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=-2.导数的四则运算 (1))(])([x u c x u c '⋅='⋅; (2))()(])()([x v x u x v x u '+'='±;(3))()()()()]()([x v x u x v x u x v x u '⋅+'⋅'=⋅;(4))()()()()()()(2x v x v x u x v x u x v x u '-'='⎥⎦⎤⎢⎣⎡二、微分1.微分的概念设)(x f y =在0x 的某邻域内有定义,若在其中给0x 一改变量x ∆,相应的函数值的改变量y ∆可以表示为).0()(0)()(00→∆∆+∆=-∆+=∆x x x A x f x x f y其中A 与x ∆无关,则称)(x f 在0x 点可微,且称A x ∆为)(x f 在0x 点的微分,记为.0x A x x dfx x dy∆====x A ∆是函数改变量y ∆的线性主部.)(x f y =在0x 可微的充要条件是)(x f 在0x 可导,且)(00x x f x x dy ∆'==.当x x f =)(时,可得x dx ∆=,因此.)(,)(00dx x f dy dx x f x x dy'='==由此可以看出,微分的计算完全可以借助导数的计算来完成.(2)微分的几何意义 当x 由0x 变到x x ∆+0时,函数纵坐标的改变量为y ∆,此时过0x 点的切线的纵坐标的改变量为dy.如图2-1所示.当dy <y ∆时,切线在曲线下方,曲线为凹弧. 当dy >y ∆时,切线在曲线上方,曲线为凸弧.2.微分运算法则 设)(),(x v x u 可微,则)()()()()()()().()()()()]()([).()()]()([.0)(),())((2x v x dv x u x du x v x v x u dx du x v x dv x u x v x u d x du x du x v x u d c d x cdu x cu d -=+=⋅±=±==三、不定积分1.不定积分概念【定义】(原函数) 若对区间I 上的每一点x ,都有,)()()()(dx x f x dF x f x F =='或则称F (x )是函数f(x)在该区间上的一个原函数.原函数的特性 若函数f(x)有一个原函数F(x ),则它就有无穷多个原函数,且这无穷多个原函数可表示为F (x )+C 的形式,其中C 是任意常数.【定义】(不定积分) 函数f(x)的原函数的全体称为f(x)的不定积分,记作⎰dx x f )(.若F(x)是f(x)的一个原函数,则⎰+=)()()(是任意常数C Cx F dx x f2.不定积分的性质(1)积分运算与微分运算互为逆运算.()()⎰⎰⎰⎰+=+='==.)()()()(,)()()()(C x F x dF C x F dx x F dx x f dx x f d x f dx x f dxd或或(2)⎰⎰≠=)0()()(k dx x f k dx x kf 常数(3)⎰⎰⎰±=±.)()()]()([dx x g dx x f dx x g x f3.基本积分公式kdx kx c =+⎰ 11x x dx c μμμ+=++⎰cos sin xdx x c =+⎰ sin cos xdx x c =-+⎰四、定积分【定义】(定积分) 函数)(x f 在区间[a,b ]上的定积分定义为∑⎰=→∆∆==ni iix baxf dx x f I 1)(lim)(ξ,【定理】(牛顿-莱布尼茨公式) 若函数)(x f 在区间[a,b ]上连续,)(x F 是)(x f 在[a,b ]上的一个原函数,则)()()()(a F b F abx F dx x f ba-==⎰.上述公式也称为微积分基本定理,是计算定积分的基本公式.常见应用1. 一石砌堤,堤身在基石上,高为h ,宽为b ,如图所示。

相关主题