常微分方程第二版答案第一章【篇一:常微分方程第一章】程1.1学习目标:1. 理解微分方程有关的基本概念, 如微分方程、方程阶数、解、通解、初始条件、初值问题等的定义和提法. 掌握处理微分方程的三种主要方法: 解析方法, 定性方法和数值方法.2. 掌握变量分离法,用变量替换将某些方程转化为变量分离方程, 掌握一阶线性方程的猜测检验法, 常数变易法和积分因子法, 灵活运用这些方法求解相应方程, 理解和掌握一阶线性方程的通解结构和性质.3. 能够大致描述给定一阶微分方程的斜率场, 通过给定的斜率场描述方程解的定性性质; 理解和掌握欧拉方法, 能够利用欧拉方法做简单的近似计算.4. 理解和掌握一阶微分方程初值问题解的存在唯一性定理, 能够利用存在唯一性定理判别方程解的存在性与唯一性并解决与之相关的问题, 了解解对初值的连续相依性和解对初值的连续性定理, 理解适定性的概念.5. 理解自治方程平衡点, 平衡解, 相线的概念, 能够画出给定自治方程的相线, 判断平衡点类型进而定性分析满足不同初始条件解的渐近行为.6. 理解和掌握一阶单参数微分方程族的分歧概念, 掌握发生分歧的条件, 理解和掌握各种分歧类型和相应的分歧图解, 能够画出给定单参数微分方程族的分歧图解, 利用分歧图解分析解的渐近行为随参数变化的状况.7. 掌握在给定的假设条件下, 建立与实际问题相应的常微分方程模型, 并能够灵活运用本章知识进行模型的各种分析.1.2基本知识: (一) 基本概念1. 什么是微分方程:联系着自变量、未知函数及它们的导数(或微分)间的关系式(一般是指等式),称之为微分方程. 2. 常微分方程和偏微分方程:(1) 如果在微分方程中,自变量的个数只有一个,则称这种微分方程为常微分方程,dy2dyd2ydy()?t?y?0. ?b?cy?f(t)例如 , dtdtdtdt2(2) 如果在微分方程中,自变量的个数为两个或两个以上,则称这种微分方程为偏?2t?t?2t?2t?2t?4微分方程. 例如 , . ???02222?t?x?x?y?z本书在不特别指明的情况下, 所说的方程或微分方程均指常微分方程.3. 微分方程的阶数: 微分方程中出现的未知函数最高阶导数的阶数.例如,d2ydy?b?cy?f(t) 是二阶常微分方程; 2dtdt?2t?t?2t?2t?2t?4与是二阶偏微分方程. ???02222?t?x?x?y?z4. n阶常微分方程的一般形式:dydnyf(t,y,,...,n)?0,dtdtdydnydydnydnyn)是t,y,,...,n的已知函数,而且一定含有n的这里f(t,y,dtdtdtdtdt 项;y是未知函数,t是自变量. 5. 线性与非线性:dydnydydny,...,n)?0的左端是y及,...,n的一次有理式,(1)如果方程f(t,y,dtdtdtdtdydny,...,n)?0为n阶线性微分方程. 则称f(t,y,dtdt(2)一般n阶线性微分方程具有形式:dnydn?1ydy?a(t)?...?a(t)?an(t)y?f(t)1n?1nn?1dtdtdt这里a1(t),…, an(t),f(t)是t的已知函数.(3)不是线性方程的方程称为非线性方程. (4)举例:d2ydy?cy?f(t)是二阶线性微分方程;方程2?bdtdtd2?g方程2?sin??0是二阶非线性微分方程;ldt方程(dy2dy)?t?y?0是一阶非线性微分方程. dtdt6. 解和隐式解:dydny,...,n)?0后,能使它变为恒等式,则如果将函数y??(t)代入方程f(t,y,dtdt)?0决定的隐函数y??(t)是称函数y??(t)为方程的解. 如果关系式?(t,y方程的解,则称?(t,y)?0为方程的隐式解. 7. 通解与特解:把含有n个独立的任意常数c1,c2,...,cn的解 y??(t,c1,c2,...,cn)称为n阶方程dydnyf(t,y,,...,n)?0的通解. 其中解对常数的独立性是指,对?及其 n?1阶导数dtdtd?dn?1?,...,n?1关于n个常数 c1,c2,...,cn的雅可比行列式不为0, 即 dtdt ???c1????c1???(n?1)?c1???c2????c2???(n?1)?c2??????cn????cn??0.??(n?1)??cn为了确定微分方程一个特定的解,通常给出这个解所必须满足的条件,称为定解条件.dydny,...,n)?0的初始条件是常见的定解条件是初始条件, n阶微分方程f(t,y,dtdtdydn?1y(1)(n?1)?y0,...,n?1?y0指如下的n个条件:t?t0,y?y0,,这里dtdt(1)(n?1)是给定的n+1个常数. 求微分方程满足定解条件的解,就是所谓t0,y0,y0,...,y0定解问题. 当定解条件为初始条件时,相应的定解问题称为初值问题. 把满足初始条件的解称为微分方程的特解. 初始条件不同,对应的特解也不同.(二) 解析方法1.变量分离方程形如dy?f(t)?(y)的方程为变量分离方程,其中f(t),?(y)分别为t,y的连续函数.dt方程解法如下:若?(y)?0,则dy?f(t)dt?(y)dy??(y)??f(t)dt?c上式确定方程的隐式通解. 如果存在y0,使得??y0??0,则y?y0也是方程的解. 2. 可化为变量分离方程的方程(1) 齐次方程dyy?g()的方程为齐次方程,g?u?为u的连续函数. dttydydu?t?u,从而原方程变为解法如下:做变量替换u?,即y?ut,有tdtdtdudug(u)?ut?u?g(u),整理有?,此为变量分离方程,可求解. dtdtt形如 (2) 形如dya1t?b1y?c1的方程, 其中a1??a2,?b1,?b2,?c1,?c2为常数. ?dta2t?b2y?c2?a1b1c1???k的情形. a2b2c2此时方程化为dy?k,可解得y?kt?c. dt?a1a2b1b2?0,即a1b1??k的情形: a2b2ku?c1dudy?a2?b2?a2?b2dtdtu?c2令 u?a2t?b2y, 则有此为变量分离方程. ?a1b1a2b2?0的情形y. t对c1?c2?0的情况, 直接做变量替换u?当c1,c2不全为零, 求 ? ?a1t?b1y?c1?0的解为?a2t?b2y?c2?0?t??. ??y???t?t??令 ? , 则方程组化为y?y???原方程化为3.一阶线性微分方程?a1t?by1?0. ?at?by?0?22dya1t?byy??g()的齐次方程可求解. dta2t?byt(1) 一般形式:a(t)dy?b(t)y?c(t)?0,若a(t)?0,则可写成 dtdy?p(t)y?qt(的形式). dtp(t)dtdy,?c为任意常数. ?p(t)y,通解为ce?(2) 一阶齐次线性微分方程:dtdy?p(t)y?q(t),q(t)?0. (3) 一阶非齐次线性微分方程:dt性质1 必有零解 y?0;性质2 通解等于任意常数c与一个特解的乘积; 性质3 任意两个解的线性组合也是该微分方程的解. (5) 非齐次线性微分方程的性质性质1 没有零解;性质2 非齐次方程的解加上对应齐次方程的解仍为非齐次方程的解; 性质3 任意两个非齐次方程的解的差是相应齐次方程的解. (6) 一阶非齐次线性微分方程的解法:(i) 猜测-检验法对于常系数的情形,即 p(t) 为常数, 此时方程为(4) 齐次线性微分方程的性质dy?ay?q(t), a为常数. dt对应齐次方程的通解为ce, 只需再求一个特解, 这时根据q(t)为特定的函数,bt可猜测不同的形式特解. 事实上, 当q(t)?ae, a,b为给定常数, 且b?a 时at可设待定特解为ce, 而当b?a时, 可设特解形式为cte, 后代入方程可确定待定常数c. 当q(t)为cosat,??sinat或它们的线性组合时, 其中a为给定常数. 这时可设待定特解为bcosat?csinat代入方程后确定b,?c的值. 当btbtq(t)具有多项式形式a0tn?a1tn?1???an?1t?an, 其中a0,?a1,??an 为给定常数且a0?0, 这时可设待定特解为b0t?bt1nn?1???bn?1t?bn代入方程可求得bi,?i?0,1?,??,n的值. 对于q(t)有上述几种线性组合的形式, 则可设待定特解是上述形式特解的线性组合. (ii) 常数变易法: 令y?c(t)e?p(t)dt,代入方程,求出c(t)后可求得通解为【篇二:常微分课后答案2.1】>1.dy?2xy,并求满足初始条件:x=0,y=1的特解. dx解:对原式进行变量分离得1dy?2xdx,两边同时积分得:lny?yc?1,故它的特解为y?ex。
2x2?c,即y?cex把x?0,y?1代入得22.ydx?(x?1)dy?0,并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:2?1111dx?2dy,当y?0lnx???c,即y?x?1yc?lnx?y当y?0时显然也是原方程的解。
当x?0,y?1时,代入式子得c?1,故特解是1y?。
1?ln?x23y dy?dxxy?x3y1?1?解:原式可化为:dy?dxy2y?1x?x显然31?y2yy1?0,dy?dx23x?x1?y1ln?2y212?lnx?ln?x?lnc(c?0),即(1?2(1?x)?cxy)222y222)(1?x)?cx故原方程的解为(1?4:(1?x)ydx?(1?y)xdy?01?x1?y解:由y?0或x?0是方程的解,当xy?0dx?dy?0 xy两边积分lnx?x?lny?y?c,即lnxy?x?y?c,故原方程的解为lnxy?x?y?c;y?0;x?0.5:(y?x)dy?(y?x)dx?0dyy?xydydu?,令?u,y?ux,?u?xdxy?xxdxdxduu?1u?11则u?x?,变量分离,得:?2du?dxdxu?1xu?1两边积分得:arctgu?12ln(1?u)??lnx?c。
22dy2?y?x?ydxydydu解:令?u,y?ux,?u?x,则原方程化为:xdxdx6:xdu?dxx2(1?u)x211,du?sgnx?dx2x?u?两边积分得:arcsinu?sgnx?lnx?c?y代回原来变量,得arcsin?sgnx?lnx?cx另外,y?x也是方程的解。
227:tgydx?ctgxdy?0解:变量分离,得:ctgydy?tgxdx两边积分得:lnsiny??lncosx?c.y2dy8:??dxy?3xey13xdy??e?c23y9:x(lnx?lny)dy?ydx?0yy解:方程可变为:?ln?dy?dx?0xxy1lnu令u?,dx??dlnuxx1?lnuy代回原变量得:cy?1?ln。