脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真姓名:--------学号:----------2014-10-28西安电子科技大学一、雷达工作原理雷达,是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。
因此,雷达也被称为“无线电定位”。
利用电磁波探测目标的电子设备。
发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。
雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。
但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。
二、线性调频(LFM)信号脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。
这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。
脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation)信号,接收时采用匹配滤波器(Matched Filter)压缩脉冲。
LFM信号的数学表达式:(2.1)其中c f 为载波频率,()t rect T为矩形信号:(2.2)其中BK T=是调频斜率,信号的瞬时频率为()22c T T f Kt t + -≤≤,如图(图2.1.典型的LFM 信号(a )up-LFM(K>0)(b )down-LFM(K<0))将式1改写为:(2.3)其中(2.4)是信号s(t)的复包络。
由傅立叶变换性质,S(t)与s(t)具有相同的幅频特性,只是中心频率不同而以,因此,Matlab仿真时,只需考虑S(t)。
以下Matlab程序产生(2.4)的LFM 信号,并作出其时域波形和幅频特性。
%%线性调频信号的产生T=10e-6; %持续时间是10usB=30e6; %调频调制带宽为30MHzK=B/T; %调频斜率Fs=2*B;Ts=1/Fs; %采样频率和采样间隔N=T/Ts;N=T/Ts;t=linspace(-T/2,T/2,N);St=exp(j*pi*K*t.^2); %产生线性调频信号subplot(211)plot(t*1e6,real(St));xlabel('时间/us');title('LFM的时域波形');grid on;axis tight;subplot(212)freq=linspace(-Fs/2,Fs/2,N);plot(freq*1e-6,fftshift(abs(fft(St))));xlabel('频率/MHz');title('LFM的频域特性');grid on;axis tight;-5-4-3-2-1012345-1-0.500.5时间/us LFM 的时域波形-30-20-1001020300204060频率/MHzLFM 的频域特性(图2.2:LFM 信号的时域波形和频域特性)三、 压缩脉冲的匹配滤波信号()s t 的匹配滤波器的时域脉冲响应为:(3.1)0t 是使滤波器物理可实现所附加的时延。
理论分析时,可令0t =0,重写3.1式,(3.2)将2.1式代入3.2式得:(3.3)图3.1:LFM 信号的匹配滤波如图3.1,()s t 经过系统()h t 得输出信号()o s t ,(3.4)当0t T ≤≤时,(3.5)当0T t -≤≤时,(3.6)合并3.5和3.6两式:(3.7)3.7式即为LFM 脉冲信号经匹配滤波器得输出,它是一固定载频c f 的信号。
当t T ≤时,包络近似为辛克(sinc )函数。
(3.8)图3.2:匹配滤波的输出信号如图3.2,当πB t=±π时, t=±1/B 为其第一零点坐标;当πB t=±π/2时,t=±1/2B ,习惯上,将此时的脉冲宽度定义为压缩脉冲宽度。
(3.9)LFM 信号的压缩前脉冲宽度T 和压缩后的脉冲宽度τ之比通常称为压缩比D ,(3.10)式3.10表明,压缩比也就是LFM 信号的时宽频宽积。
由2.1,3.3,3.7式,s(t),h(t),so(t)均为复信号形式,Matab 仿真时,只需考虑它们的复包络S(t),H(t),So(t)。
以下Matlab 程序段仿真了图3.1所示的过程,并将仿真结果和理论进行对照。
%%线性调频信号的匹配滤波T=10e-6;B=30e6;K=B/T;Fs=10*B;Ts=1/Fs;N=T/Ts;t=linspace(-T/2,T/2,N);St=exp(j*pi*K*t.^2); %产生线性调频信号Ht=exp(-j*pi*K*t.^2); %匹配滤波器Sot=conv(St,Ht); %线性调频信号经过匹配滤波器subplot(211)L=2*N-1;t1=linspace(-T,T,L);Z=abs(Sot);Z=Z/max(Z); %归一化Z=20*log10(Z+1e-6);Z1=abs(sinc(B.*t1)); %sinc函数Z1=20*log10(Z1+1e-6);t1=t1*B;plot(t1,Z,t1,Z1,'r.');axis([-15,15,-50,inf]);grid on;legend('仿真','sinc');xlabel('时间sec \times\itB');ylabel('振幅,dB');title('线性调频信号经过匹配滤波器');subplot(212) %放大N0=3*Fs/B;t2=-N0*Ts:Ts:N0*Ts; t2=B*t2;plot(t2,Z(N-N0:N+N0),t2,Z1(N-N0:N+N0),'r.'); axis([-inf,inf,-50,inf]);grid on;set(gca,'Ytick',[-13.4,-4,0],'Xtick',[-3,-2,-1,-0.5,0,0.5,1,2,3]); xlabel('时间 sec \times\itB'); ylabel('振幅,dB');title('线性调频信号经过匹配滤波器(放大)'); 结果:-15-10-5051015时间 sec ⨯B振幅,d B线性调频信号经过匹配滤波器-3-2-1-0.500.5123时间 sec ⨯B振幅,d B线性调频信号经过匹配滤波器(放大)图3.3:线性调频信号的匹配滤波上图中,时间轴进行了归一化,(t/(1/B)=t x B )。
图中反映出理论与仿真结果吻合良好。
第一零点出现在±1(即±1/B )处,此时相对幅度-13.4dB 。
压缩后的脉冲宽度近似为1/B (±1/2B ),此时相对幅度-4dB,这理论分析(图3.2)一致。
四、Matlab仿真1.任务:对以下雷达系统仿真。
雷达发射信号参数:幅度:1.0信号波形:线性调频信号频带宽度:30MHz脉冲宽度:10us中心频率:1GHzHz雷达接收方式:正交解调接收距离门:10Km~15Km目标:Tar1:10.5KmTar2:11KmTar3:12KmTar4:12Km+5mTar5:13KmTar6:13Km+2m2.系统模型:结合以上分析,用Matlab仿真雷达发射信号,回波信号,和压缩后的信号的复包络特性,其载频不予考虑(实际中需加调制和正交解调环节),仿真信号与系统模型如下图。
图4.1:雷达仿真等效信号与系统模型3.线性调频脉冲压缩雷达仿真程序LFM_radar仿真程序模拟产生理想点目标的回波,并采用频域相关方法(以便利用FFT)实现脉冲压缩。
函数LFM_radar的参数意义如下:T:LFM信号的持续脉宽;B:LFM信号的频带宽度;Rmin:观测目标距雷达的最近位置;Rmax:观测目标距雷达的最远位置;R:一维数组,数组值表示每个目标相对雷达的距离;RCS:一维数组,数组值表示每个目标的雷达散射截面。
在Matlab指令窗中输入:LFM_radar(10e-6,30e6,10000,15000,[10500,11000,12000,12005,13000,13002],[1,1,1,1,1,1])得到的仿真结果如下图。
707580859095100时间/s振幅无压缩的雷达回波1 1.05 1.1 1.15 1.21.251.3 1.35 1.4 1.45 1.5x 104-60-40-200距离/m振幅/ d B压缩后的雷达回波五、 心得通过这次使用Matlab 对脉冲压缩雷达的仿真,让我充分理解到了脉冲压缩雷达的工作原理,以及脉冲压缩雷达与普通脉冲雷达的差异,这让我对与雷达原理这门课有了更加深入的理解,对于匹配滤波的深入了解,使得在课堂中没有充分理解的地方清晰的展现在眼前。
这次实验不仅仅会促进我雷达原理课程的学习,也为我以后学习雷达专业提供了一种可靠的方法。
六、附录Matlab代码(LFM_radar.m)%%脉冲压缩雷达仿真function LFM_radar(T,B,Rmin,Rmax,R,RCS)if nargin==0T=10e-6; %脉冲持续时间10usB=30e6; %频带宽度30MHzRmin=10000;Rmax=15000; %作用范围R=[10500,11000,12000,12008,13000,13002]; %目标位置RCS=[1 1 1 1 1 1]; %雷达散射面end%%参数设定C=3e8; %设定速度为光速K=B/T; %调频斜率Rwid=Rmax-Rmin; %距离Twid=2*Rwid/C; %时间Fs=5*B;Ts=1/Fs; %采样频率和采样间隔Nwid=ceil(Twid/Ts);%%回波t=linspace(2*Rmin/C,2*Rmax/C,Nwid); %接收范围(2*Rmin/C < t < 2*Rmax/C)M=length(R); %目标数量td=ones(M,1)*t-2*R'/C*ones(1,Nwid);Srt=RCS*(exp(j*pi*K*td.^2).*(abs(td)<T/2)); %雷达回波%%利用FFT和IFFT进行数字信号处理Nchirp=ceil(T/Ts); %多脉冲持续时间Nfft=2^nextpow2(Nwid+Nwid-1);Srw=fft(Srt,Nfft); %雷达回波的fft计算t0=linspace(-T/2,T/2,Nchirp);St=exp(j*pi*K*t0.^2); %线性调频信号Sw=fft(St,Nfft); %线性调频信号的fft计算Sot=fftshift(ifft(Srw.*conj(Sw))); %脉冲压缩后的信号N0=Nfft/2-Nchirp/2;Z=abs(Sot(N0:N0+Nwid-1));Z=Z/max(Z);Z=20*log10(Z+1e-6);%产生图像subplot(211)plot(t*1e6,real(Srt));axis tight;xlabel('时间/s ');ylabel('振幅')title('无压缩的雷达回波');subplot(212)plot(t*C/2,Z)axis([10000,15000,-60,0]);xlabel('距离/m');ylabel('振幅/ dB')title('压缩后的雷达回波');(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,供参考,感谢您的配合和支持)。