当前位置:文档之家› 毕业设计 智能电动车

毕业设计 智能电动车

目录1 引言 (2)2 智能电动车的原理 (2)3 红外线光控电路 (3)3.1 红外线相关 (3)3.2 继电器 (4)3.3 红外线光控电路的组成 (4)3.4 LM324芯片在具体电路中的应用 (5)4 LM567芯片 (9)4.1 LM567在红外光电探测电路中的应用 (10)4.2 小车电路所需元器件 (14)4.3小车内部电路以及连线 (15)4.4小车电路分析结束语 (15)4.5小车整体性能的调试 (16)5小车前景 (17)结束语 (17)致谢 (17)参考文献 (17)1 引言近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。

人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。

而机器人在复杂地形中行进时自动避障是一项必不可少也是最基本的功能。

因此,自动避障系统的研发开始显得尤为重要。

避障控制系统是基于自动导引小车,使用传感器感知路线,实现自动识别路线,判断并自动避开障碍,选择正确的行进路线。

自动避障小车就是自动避障机器人中的一类。

自动避障小车可以作为地域探索机器人和紧急抢险机器人的运动系统,让机器人在行进中自动避过障碍物。

2 智能电动车的原理图1 电动车的原理示意图智能小车原理示意图如图1所示,小车的电路基本有六部分组成,包括手动控制电路、无线遥控控制电路、转换开关、继电器、红外线光控电路和小车马达,其中红外线光控电路是小车的核心部件,它在一定意义上体现了小车的智能。

小车的工作过程大致是:小车手动控制电路和无线遥控控制电路通过转换开关将反射物体红外线发射管 红外线光敏管红外线光控电路继电器转换开关小车手动控制电路 小车无线遥控电路M小车马达控制信号传给小车继电器,小车继电器平时处于常闭状态,继电器直接接在小车马达上.而红外线光控电路则直接作用于继电器上,红外线光控电路的探测距离在1.5厘米之内(探测距离可通过可变电阻W进行调节,此电路将在下面介绍)当小车在行使过程中,红外线光控电路的红外线发射管不断的向外发射红外线,不论是手动控制还是无线遥控控制,当小车的前方出现障碍物时,红外线发射管发出的红外线被物体反射回来,被红外线光敏管接受,接受到的信号通过红外线光控电路的四级放大后(此放大电路将在下面介绍到)作用于继电器,使继电器的常闭触点断开,使小车马达断电,实现了小车的避障.3 红外线光控电路3.1 红外线相关红外线是太阳光线中众多不可见光线中的一种,由英国科学家霍胥尔于1800年发现,又称为红外热辐射,他将太阳光用三棱镜分解开,在各种不同颜色的色带位置上放置了温度计,试图测量各种颜色的光的加热效应。

结果发现,位于红光外侧的那支温度计升温最快。

因此得到结论:太阳光谱中,红光的外侧必定存在看不见的光线,这就是红外线。

也可以当作传输之媒界。

太阳光谱上红外线的波长大于可见光线,波长为0.75~1000μm。

红外线可分为三部分,即近红外线,波长为0.75~1.50μm之间;中红外线,波长为1.50~6.0μm之间;远红外线,波长为6.0~l000μm 之间。

自从1800年英国天文学家霍胥尔发现红外辐射至今,红外技术的发展经历了将近两个世纪。

从那时开始,红外辐射和红外元件、部件的科学研究逐步发展,但发展比较缓慢,直到1940年前后才真正出现现代的红外技术。

此后,美国、英国、前苏联等国竞相发展。

特别是美国,大力研究红外技术在军事方面的应用。

红外技术发展的先导是红外探测器的发展。

赫歇尔发现红外辐射时使用的是水银温度计,这是最原始的热敏型红外探测器。

1830年以后,相继研制出温差电偶的热敏探测器、测辐射热计等。

在1940年以前,研制成的红外探测器主要是热敏型探测器。

19世纪,科学家们使用热敏型红外探测器,认识了红外辐射的特性及其规律,证明了红外线与可见光具有相同的物理性质,遵守相同的规律。

它们都是电磁波之一,具有波动性,其传播速度都是光速、波长是它们的特征参数并可以测量。

20世纪初开始,测量了大量的有机物质和无机物质的吸收、发射和反射光谱,证明了红外技术在物质分析中的价值。

从60年代中叶起,红外探测器和系统的发展体现了红外技术的现状及发展方向。

1.在1~14微米范围内的探测器已从单元发展到多元,从多元发展到焦平面阵列。

2.红外探测器的工作波段从近红外扩展到远红外。

早期的红外探测器通常工作在近红外。

随着红外技术的发展,红外探测器的工作波段已扩展到中红外和远红外。

3.轻小型化。

非致冷、集成式、大面阵红外探测器方向发展。

4.红外探测系统从单波段向多波段发展。

在红外技术的发展中,需要特别指出的是:60年代激光的出现极大地影响了红外技术的发展,很多重要的激光器件都在红外波段,其相干性便于移用电子技术中的外差接收技术,使雷达和通信都可以在红外波段实现,并可获得更高的分辨率和更大的信息容量。

在此之前,红外技术仅仅能探测非相干红外辐射,外差接收技术用于红外探测,使探测性能比功率探测高好几个数量级。

另外,由于这类应用的需要,促使出现新的探测器件。

3.2 继电器继电器是一种自动电器开关。

它的功能是:当给予一个输入量,如电、磁、光、或热等信号时,就能自动切换被控制的电路。

继电器是一种重要的电子元件,随着科学技术的不断发展,品种及类型也越来越多,技术性能越来越高,其制造工艺也随之发展。

继电器在国民经济部门,特别是航空航天、军事及有关自动化部门作用越来越大。

在小车电路中,采用两输入两输出的继电器。

3.3 红外线光控电路的组成红外线光控电路主要由两部分组成:LM324四运放集成电路和LM567集成锁相环路解码器。

LM324四运放集成电路它采用14脚双列直插塑料封装,内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。

每一组运算放大器可用图2.1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。

两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。

LM324的引脚排列见图2.2图2.1 LM324内部运算放大器图2.2 LM324外部引脚图LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点。

LM324芯片在小车电路中主要作用是将信号放大后输出给LM567芯片。

基于LM324上述的诸多优点,在小车电路的设计过程中采用了此芯片来用于对信号的放大。

LM324芯片在很多电路中都有应用,例如,反相交流放大器、同相交流放大器、三分配放大器等等,而小车电路中主要应用的是LM324芯片反相放大的功能对电路中的信号进行一级一级的放大,直到信号能够满足LM567芯片的要求。

3.4 LM324芯片在具体电路中的应用1 LM324芯片的反相交流放大器电路电路见图3,此放大器可代替三极管进行交流放大,可用于扩音机前置放大等,电路无需调试,放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。

放大器电压放大倍数Av仅有外接电源Ri 、Rf决定:Av=-Rf/Ri。

负号表示输出信号与输入信号相位相反。

按图中所给数值,Av=-10。

此电路输入电阻为Ri。

一般情况下先取Ri 与信号源内阻相等,然后根据要求的放大倍数在选定Rf。

Co和Ci为耦合电容。

图3反相交流放大器2 同相交流放大器电路见图4,同相交流放大器的特点是输出阻抗高,其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。

图4 同相交流放大器电路的电压放大倍数Av也是仅由外接电阻决定:Av=1+Rf /R4,电路输入电阻为R3,R4的阻值范围为几千欧姆到几十千欧姆。

交流信号三分配放大器电路如图5所示,此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。

而对信号源的影响极小,因运放Ai 输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。

R 1、R2组成1/2V+偏置,静态时A1输出端电压为1/2V+,故运放A2-A4输出电压也为1/2V+,通过输入输出电容的隔直作用,取出交流信号。

形成三路分配输出。

图5交流信号三分配放大器3 测温电路电路见图6,感温探头采用一只硅三极管3DG6,把它接成二极管形式,硅晶体管发射结电压的温度系数约为-2.5mV/℃,即温度每上升1度,发射结电压变会下降2.5mV。

运放A1连接成同相直流放大形式,温度越高,晶体管BG1压降越小,运放A1同相输入端的电压就越低,输出端的电压也越低。

图6测温电路这是一个线性放大过程,在A1输出端接上测量或处理电路,便可对温度进行指示或进行其它自动控制。

4 有源带通滤波器电路见图7,许多音响装置的频谱分析器均使用此电路作为带通滤波器,以选出各个不同频段的信号,在显示上利用发光二极管点亮的多少来指示出信号幅度的大小。

这种有源带通滤波器的中心频率,在中心频率fo处的电压增益Ao=B3/2B1,品质因数,3dB带宽B=1/(п*R3*C)也可根据设计确定的Q、fo、Ao值,去求出带通滤波器的各元件参数值。

R1=Q/(2пfoAoC),R2=Q/((2Q2-Ao)*2пfoC),R3=2Q/(2пfoC)。

上式中,当fo=1KHz时,C取0.01Uf。

此电路亦可用于一般的选频放大。

图7 有源带通滤波器此电路亦可使用单电源,只需将运放正输入端偏置在1/2V+并将电阻R2下端接到运放正输入端既可。

5 比较器电路见图8,在运放电路中,当去掉运放的反馈电阻时,后者说反馈电阻为无穷大时(即开环状态),理论上认为运放的开环放大倍数也为无穷大(实际上是很大,如LM324运放开环放大倍数为100dB,既10万倍)。

此时运放便形成一个电压比较器,其输出如不是高电平(V+),就是低电平(V-或接地)。

当正输入端电压高于负输入端电压时,运放输出低电平。

图8 比较器电路图图中使用两个运放组成一个电压上下限比较器,电阻R1、R1ˊ组成分压电路,为运放A1设定比较电平U1;电阻R2、R2ˊ组成分压电路,为运放A2设定比较电平U2。

输入电压U1同时加到A1的正输入端和A2的负输入端之间,当Ui>U1时,运放A1输出高电平;当Ui <U2时,运放A2输出高电平。

运放A1、A2只要有一个输出高电平,晶体管BG1就会导通,发光二极管LED就会点亮。

若选择U1>U2,则当输入电压Ui越出[U2,U1]区间范围时,LED点亮,这便是一个电压双限指示器。

若选择U2 > U1,则当输入电压在[U2,U1]区间范围时,LED点亮,这是一个“窗口”电压指示器。

相关主题