当前位置:文档之家› 精密机械系统的设计

精密机械系统的设计


42 8
L2 L1 H Lt


H

Lt
H
t L2
8H
铸件长度L=2000mm.高H=500mm, 温差为1°C时
产生温度变化的原因
为减小热变形可采用如下措施:
(1) 严格控制工作环境温度(恒温) (2) 控制仪器内的热源 (3) 采取温度补偿措施
㈣有良好的抗振性 提高抗振性的方法
(3)正确的结构布局,减小力变形 (4)良好的结构工艺性,减小应力变形 (5)合理选择材料
第二节 仪器的导轨及设计
一、导轨的功用与分类
功能:传递精密直线运动, 保证各运动部件的相对 位置和相对运动精度以 及承受载荷。
导轨部件有运动导轨(动) 和支承导轨(静)组成。
导轨种类: 1)滑动摩擦导轨 2)滚动导轨 3)静压导轨 4)弹性摩擦导轨
2.设计要求
㈠有足够的刚度,力变形要小 ㈡稳定性好,内应力变形小
a.自然时效处理 b.人工时效处理
㈢热变形要小
举例说明:对于一个长度为L、高度为H的矩形基座.当其上表面温 度高于下底而时会产生上凸下凹的形变.
热变形造成的误差
最大凹凸量可由下式求得:

tan


推出 L L
4
L 2
(2)合理地选择和布置加强肋增加刚度 肋:指连接两壁内壁,形状、位置应根据受力的大小方 向而定合理地布置加强肋可以有效地增大刚度,其效果比 增加壁厚更明显。
加强肋有肋板和肋条两种。精度要求较高的仪器其基座 都布置肋板以提局其刚度,减小变形量。肋条一般布置在 基座或支承件的局部,以便增加局部的刚度.
1)在满足刚性要求情况下,尽量减轻重量,以提高固有频率,防止共振。 2)合理地进行结构设计 3)减小内部振源的振动影响 4)采用减振或隔振设计
二、基座与立柱等支承件的结构设计
(一)刚度设计
刚度设计就是要使支承件具有足够的静刚度和动刚度,在满足刚度要求 情况下减轻重量、以减小重力变形和避免共振。 (1)有限元分祈法:用计算机技术与有限元分析相结合,对支承件的刚度 进行计算的方法。 基本原理:
(2)仿真分析法:模型仿真和计算机仿真 相似准则可用微分方程法和量纲分析法确定
以粱的弯曲变形模型试验中相似判据的确定方法为例,来说明微分方程 法在相似判据确定中的应用。
1.梁的弯曲变形方程为
d 2 M
dl 2 EI
式中 为沿弯曲挠度方向的坐标;l为沿梁长度方向的坐标;E为材料的弹
性模量;I为梁的截面惯性矩;M为弯矩。
实际上爬行是一个摩擦自激振问题,可作如下分析计算 通过理论分析可求出不发生爬行的临界速度为:
vc F / 4mk
式中 F F0 F (静摩擦力与动摩擦力之差)
结论:减小爬行应采取的措施
(三)刚度要求 导轨刚度定义:在外力的作用下导轨抵抗变形的能力。 导轨受力变形的种类: 1.自重变形:是作用在导轨面上的零部件重量造成的。
第一节 仪器的支承件设计
支承件包括基座、立柱、机柜、机箱等。 支承件作用:起支承、连接各种零部件的作用,还起确定零部件间相 互位置的作用,以保证仪器的工作精度。支承件直接与被测件相连, 是测量环节中的一部分,其力变形、温度变形将直接影响测量精度。
一、支承件的结构特点和设计要求 1.特点 (1)结构尺寸大 (2)结构复杂
例:三座标机横梁导轨
减小办法:刚度设计 结构设计 补偿措施
2.局部变形:发生在载荷集中的地方 3.接触变形:由于表面不平度造成
接触刚度
K
j

P

(2)接触精度 在动导轨与静导轨接触部位,由于微观的 不平度,造成实际际接只是理论接触面积的—部分,从而 造成接触变形,在导轨运行一段时间后,由于接触变形和 磨损而产生动导轨及滑架扭摆。
减小导轨表面粗糙度值可以有效地提高接触精度。
(二)导轨运动的平稳性 爬行现象 爬行现象影响工作台运动的平稳性和定位精度。 爬行现象产生原因: 1.导轨间动静摩擦系数差值较大 2.摩擦系数随速度变化 3.系统刚度差 为了分析方便将带有导轨、工作台的机械传动装置简化为 力学模型。
Cl2 dl22
CECI E2I2
C Cl2
CM CECI
CP

P1 P2
CM CPCl
CI

C
4 l
C Cl2

CPCl C E Cl4

CEC Cl CP
1
El
P
K
模型制作要考虑尺寸相似、材料及其弹性变形相似,以保证测量精度。
做仿真试验时,应考虑力学和动力学相似以及边界条件相似,同时还要 注意正确选择测量仪器和测量方法,以保证必要测量精度。
以下标1代表实物, 下标2代表模型. 则有
d 21 M1
dl1 2
E1 I1
d 22
dl22
M2 E2 I 2
2.确定相似系数 、l 、M、E、I相似系数 分别为C 、Cl
则 1 C 2 ……..
……..
d 21
dl12


C d 2 2
Cl2dl22
C d 2 2 CM M 2
二、导轨部件设计的基本要求 (一)导向精度(精度指标) 动导轨运动轨迹的准确性。
对于直线运动导轨,导向精度指导轨沿给定方向做直线运 动的准确程度。
直线度是重要的精度指标,取决于导轨面的几何精度 及其他因素,其大小可以用线值或角度值表示。 (1)导轨的几何精度:包括导轨在垂直平面内与水平面内的
直线度,导轨面间的平行度和导轨间的垂直度。
肋板的布置形式分为纵向、横向和斜置肋 1.纵向肋板:应布置在弯曲平面内,对提高抗弯刚度效果明 显。 2.横向肋板:构件受扭时,横向肋对提高抗扭刚度效果明显。 3.斜置肋板:可提高构件的抗弯刚度和抗扭刚度。
肋条一般布置在基座或支承件的局部,以增加局部的刚度。 肋的布置形状多种:P114,如图4-3所示。
(二)基座与支承件的结构设计 结构设计重要性:
(1)正确选样截面形状与外形结构
结论:
1.空心截面的惯性矩比实心截面的惯性矩大,所以在相同截 面积的情况下,可用减小壁厚,加大轮廓尺寸的方法,提 高支承刚度。
2.圆形空心截面能提高抗扭刚度,长方形空心截面对提高长 边方向的抗弯刚度效果明显。
3.不封闭形式的截面,抗扭刚度极差。 支承件的外形面:一般有矩形、船形、圆形。
相关主题