模电主要章节知识点归总
由此可以得出结论:PN结具有单向 导电性。
PN结V-I 特性表达式
iD=IS(evD/VT 1)
其中
IS ——反向饱和电流 VT ——温度的电压当量
且在常温下(T=300K)
VT
=
kT=0.026V=26mV q
PN结的伏安特性
3.2.4 PN结的反向击穿
当PN结的反向电压 增加到一定数值时,反 向电流突然快速增加, 此现象称为PN结的反向 击穿。
形成:向本征半导体中掺入少量的 5 价元素
特点:(a)含有大量的电子——多数载流子 (b)含有少量的空穴——少数载流子
(2) P 型半导体(空穴型半导体)
形成:向本征半导体中掺入少量的 3 价元素
特点:(a)含有大量的空穴——多数载流子 (b)含有少量的电子——少数载流子
无论N型或P型半导体都是中性的,对外不显电性。
放大状态下BJT中载流子的传输过程
2. 电流分配关系
又设= 1
根据 IE=IB+ IC
IC= InC+ ICBO
= I nC IE
且令 ICEO= (1+ ) ICBO (穿透电流)
则 = ICICEO
IB
当IC
IC
时
EO
, IC
IB
是另一个电流放大系数。同样,它也只与管
子的结构尺寸和掺杂浓度有关,与外加电压无关。
rd
=VT ID
=
26(mV) ID(mA)
(a)V-I特性 (b)电路模型
特别注意: ▪ 小信号模型中的微变电阻rd与静态工作点Q有关。 ▪ 该模型用于二极管处于正向偏置条件下,且vD>>VT 。
3.5 特殊二极管
(一)稳压二极管
I/mA
(1) 结构:面接触型硅二极管
(2) 主要特点: (a) 正向特性同普通二极管 (b) 反向特性
一般 >> 1 。
பைடு நூலகம்
3. 三极管的三种组态
BJT的三种组态
共发射极接法,发射极作为公共电极,用CE表示; 共基极接法,基极作为公共电极,用CB表示; 共集电极接法,集电极作为公共电极,用CC表示。
三极管的放大作用,主要是依靠它的发射极电 流能够通过基区传输,然后到达集电极而实现 的。
实现这一传输过程的两个条件是:
根据放大电路输入信号的条件和对输出信号的要求,放大器 可分为四种类型,所以有四种放大倍数的定义。
(1)电压放大倍数定义为: (2)电流放大倍数定义为: (3)互阻增益定义为: (4)互导增益定义为:
AU=UO/UI
AI=IO/II
Ar=UO/II Ag=IO/UI
2. 输入电阻Ri——从放大电路输入端看进去的等效电 阻,决定了放大电路从信号源吸取信号幅值的大小。
4.3.1 图解分析法
1. 静态工作点的图解分析
• 在输入特性曲线上,作出直线 vBE=VBB iBRb,两线的交点 即是Q点,得到IBQ。
流子传输体现出来的。
外部条件:发射结正偏 集电结反偏
由于三极管内有两种载流子(自由 电子和空穴)参与导电,故称为双极 型三极管或BJT (Bipolar Junction Transistor)。
1. 内部载流子的传输过程
发射区:发射载流子
集电区:收集载流子
基区:传送和控制载流子
(以NPN为例)
IE=IB+ IC IC= InC+ ICBO
o
u+ - u-
-Uo(sat)
理想运算放大器
理想运放及其分析依据
1)开环电压放大倍数 Auo→∞ 理想化条件: 2)差模输入电阻 rid→∞
3)开环输出电阻 ro→0 4)共模抑制比 KCMRR→∞
+
+
Vp
-
-
vN
+
-
+
Avo(vp-vN)
-
vo
理想运算放大器的特性
理想运算放大器具有“虚短”和“虚断”的特性, 这两个特性对分析线性运用的运放电路十分有用。为 了保证线性运用,运放必须在闭环(负反馈)下工作。
RS ii
uS
ui
信号源 输入端
Ri
Au
输出端
输入电阻:
Ri=ui / ii
一般来说, Ri越大越好。 (1)Ri越大,ii就越小,从信号源索取的电流越小。 (2)当信号源有内阻时, Ri越大, ui就越接近uS。
3. 输出电阻Ro——从放大电路输出端看进 去的等效电阻。决定了放大电路带负载的能力。
f
通频带: fBW=fH–fL
第二章 运算放大器
主讲: 胡仕刚
湖南科技大学信息与电气工程学院
开环电压放大倍数高(104-107); 输入电阻高(约几百KΩ); 输出电阻低(约几百Ω); 漂移小、可靠性高、体积小、重量轻、价格低 。
电压传输特性 Vo=Avo(vp-vN)
+Uo(sat)
理想特性 实际特性
小信号模型,即以Q点为切点的一条直线。
过Q点的切线可以等 效成一个微变电阻
即
rd
=
vD iD
根据 iD=IS(evD/VT 1)
得Q点处的微变电导
(a)V-I特性 (b)电路模型
gd
=
diD dvD
Q
= IS VT
evD /VT
Q
iD VT
Q
= ID VT
则
rd
=
1 gd
=
VT ID
常温下(T=300K)
集电子,基区复合减少,同样的vBE下 IB减小,特性曲线右移。
共射极连接
4.1.3 BJT的V-I 特性曲线
2. 输出特性曲线
iC=f(vCE) iB=const
输出特性曲线的三个区域:
饱和区:iC明显受vCE控制的区域, 该区域内,一般vCE<0.7V (硅管)。
此时,发射结正偏,集电结正偏或反 偏电压很小。
模拟电路知识体系
• 总的来说就是以三极管为核心,以集成运放为主 线。
• 集成运放内部主要组成单元是差分输入级、电压 放大级、功率放大级、偏置电路。
• 集成运放的两个不同工作状态:线性和非线性应 用。
• 模拟电路主要就是围绕集成运放的内部结构、外 部特性及应用、性能改善、工作电源产生、信号 源产生等展开。
截止区:iC接近零的区域,相当iB=0
的曲线的下方。此时, vBE小于死区 电压。
放大区:iC平行于vCE轴的区域,曲
线基本平行等距。此时,发射结正偏, 集电结反偏。
4.1.4 BJT的主要参数
极限参数
(1) 集电极最大允许电流ICM (2) 集电极最大允许功率损耗PCM
PCM= ICVCE
• V(BR)CEO——基极开路时集电极和发射 极间的击穿电压。
第一章 绪 论
主讲: 胡仕刚
湖南科技大学信息与电气工程学院
1.2 放大电路基本知识
一、放大电路的表示方法
放大电路主要用于放大微弱的电信号,输出电压或电流 在幅度上得到了放大。放大电路为双口网络,即一个信号 输入口和一个信号输出口。
1.3 放大电路的主要技术性能指 标
1.放大倍数(增益)——表征放大器的放大能力
(1)内部条件:发射区杂质浓度远大于基区 杂质浓度,且基区很薄。
(2)外部条件:发射结正向偏置,集电结反 向偏置。
4.1.3 BJT的V-I 特性曲线
1. 输入特性曲线
(以共射极放大电路为例)
iB=f(vBE) vCE=const
(1) 当vCE=0V时,相当于发射结的正向伏安特性曲线。 (2) 当vCE≥1V时, vCB= vCE - vBE>0,集电结已进入反偏状态,开始收
返 回 下一节
上一页
18 下一页
3.2.1 载流子的漂移与扩散
漂移运动: 由电场作用引起的载流子的运动称为漂移运动。
扩散运动: 由载流子浓度差引起的载流子的运动称为扩散运动。
3.2.2 PN结形成
在一块本征半导体两侧通过扩散不同的杂质,分 别形成N型半导体和P型半导体。此时将在N型半 导体和P型半导体的结合面上形成如下物理过程:
• 较大的 I 较小的 U •工作在反向击穿状态。 在一定范围内,反向击穿 具有可逆性。
Uz (a) 图形符号
0
U/V
Izmin
Izmax
(b) 伏安特性
(3)主要参数 稳定电压:Uz 最小稳定电流:Izmin
最大稳定电流:Izmax
返回
上一节 下一节
上一页
31 下一页
第四章 三极管及放大电路基础
︱V(BR) ︱> ︱V︱ > 0 iD = IS < 0.1 A(硅)几十 A (锗) ︱V︱> ︱U(BR) ︱ 反向电流急剧增大 (反向击穿)
3.4.2 二极管电路的简化模型分析方法
1.二极管V-I 特性的建模
将指数模型 iD=IS(e分vD段VT线性1)化,得到二极管特性的 等效模型。 (1)理想模型
二、二极管的伏安特性
0 V Vth iD = 0
iD /mA
V (BR) IS
反 向
反向特性 O
正向特性 Vth uD /V
Vth = 0.5 V (硅管) 0.1 V (锗管)
V Vth
iD 急剧上升
击 穿
死区 电压
VD(on) = (0.6 0.8) V 硅管 0.7 V (0.2 0.4) V 锗管 0.3 V
输出端
uS ~
Au
Ro
输出端
u’o
输出电阻的定义:
.
Ro
=
U’o
.
I’o
RL =∞ ,