氨基甲酸酯类农药残留分析方法的研究进展摘要:目前氨基甲酸酯类农药被广泛应用,其母体及代谢产物有较为严重的毒害作用。
建立快速、灵敏、有效的氨基甲酸酯类农药残留的检测技术,成为当前研究者关注的课题。
本文者从分光光度测定法、色谱分析、生物检测、免疫分析、生物传感器、联用技术6 个方面综述了目前氨基甲酸酯类农药残留分析方法的研究进展及应用现状。
关键字:氨基甲酸酯、农药残留、检测方法1、分光光度测定法由于早期在分光光度分析过程中没有分离步骤,因此颜色反应的特异性就成为目标化合物定量分析的主要因素,如环境中的总涕灭威残留量可用氨基甲酰肟基团的特殊反应来测定。
残留物用碱分解,产生涕灭威肟,再用酸水解放出羟胺。
后者用碘氧化成亚硝酸,然后用亚硝酸-偶氮法测定。
这种方法是早期使用的分析方法,由于其操作烦琐,灵敏度低,易受其它物质干扰,现已很少使用。
蒋淑艳等[ 2 ] 提出采用间接邻菲罗啉光度法测定氨基甲酸酯类农药,其标准偏差为0 . 21%~2 . 3%,变异系数为0. 22%~2. 43%,回收率达99.6 %~107. 8%。
目前对农药西维因也常采用分光光度分析法,并且采用不同的样品前处理、不同的耦合试剂和不同的波长条件下进行测定。
如可先将西维因氧化成1-奈酚,固定于固相吸附剂上,然后用分光光度计测定水样中的西维因;也可用固相萃取(SPE)浓缩西维因,经过洗脱和溶剂替换后,用分光光度法进行测定。
分光光度测定法对于农药残留量进行分析时,不足之处是首先需要进行富集,其优点为要求的设备简单,对于基层生产单位及一般实验室具有使用价值。
2、色谱法2.1 气相色谱法(GC)测定气相色谱法(GC)是一种经典的农残检测方法,约70%的农药残留都是用气相色谱法来检测。
氨基甲酸酯类农药在高温中不稳定,即使在选择柱条件方面下很大功夫,仍不可避免产生氨基甲酸酯的分解,同时也缺乏灵敏度高的选择性检测器,于是只能对不发生分解的氨基甲酸酯进行直接GC测定。
而对于易热分解的化合物,或是考虑将氨基甲酸酯完全水解,以测定氨基甲酸酯的甲胺或酚部分,或是通过热稳定衍生化后测定其衍生物。
陈霞等[5]建立了蔬菜中24种有机磷和氨基甲酸酯类农药残留的检测新方法,在蔬菜中3个浓度添加水平的平均回收率为70.1%~113.4%,相对标准偏差(RSD)1.8%~12.4%,该方法准确,杂质干扰少,操作简便,适用于蔬菜样品中农药多残留的检测。
2.2高效液相色谱法(HPLC)测定高效液相色谱法对于气相色谱法不能分析的高沸点或稳定性差的农药可以进行有效的分离检测,特别适于检测氨基甲酸酯类农药。
大部分氨基甲酸酯类农药的HPLC检测采用反相C8或C18柱,检出限一般高于气相色谱(GC)的检出限。
近年来多采用液相色谱法柱后衍生技术,能够使氨基甲酸酯类农药中的甲氨基团在碱液作用下生成的甲胺与衍生试剂反应生成一种强荧光物质,可用高灵敏度的荧光检测器检测该物质,选择性高,基质干扰小,是检测氨基甲酸酯类农药有效、灵敏的方法之一。
马纪伟等[6]通过柱后衍生化,荧光检测器(荧光波长为445nm)定性定量测定猕猴桃中11种氨基甲酸酯类农药的残留量。
11种农药在30min内可以得到很好的分离,线性范围为0.01~50.00mg/L,线性相关系数为0.9989~0.9999,检出限为5.0~0.7μg/L,方法回收率为82.96%~101.10%。
2.3 其他色谱技术测定其它应用于氨基甲酸酯农药残留分析的色谱技术还有超临界流体色谱法(SFC)和薄层色谱(TLC)等。
SFC是以超临界流体作为色谱流动相的分离检测技术。
SFC对气相色谱和液相色谱的优点加以综合利用,弥补了GC和HPLC的不足,可以在较低温度下分析分子量较大,对热不稳定、极性较强和不易分析的化合物。
吴莉等[7]利用双波长反射吸收薄层扫描法研究了呋喃丹定量分析方法,呋喃丹的检出限为0.3μg,回收率为96.94%~100.38%,相对标准偏差为1.73%。
3、生物检测方法3.1 活体生物测定法活体检测法是使用活的生物直接测定。
袁东星等利用发光菌进行农残检测,该方法的最小检出浓度为3 mg/L副。
袁振华等以大型水蚤为试验材料,对蔬菜中农残作了监测,研究表明大型水蚤测试技术完全适用于蔬菜中的农残测定。
20世纪60年代后期,台湾农业试验所采用生物测定法进行农残检验,其原理是放饲高敏感性的家蝇子菜汁中,4~5 h后家蝇死亡率在10%以下即为合格引。
3.2 乙酰胆碱酯酶抑制法乙酰胆碱酯酶抑制法是研究最多且相对成熟的一种对部分农药进行残留快速检测技术。
乙酰胆碱酯酶抑制法是利用有机磷与氨基甲酸酯类农药可特异性地抑制昆虫中枢和周围神经系统中乙酰胆碱酯酶(AchE)的活性,破坏神经的正常传导,使昆虫中毒致死这一毒理学原理,将(AChE)与样品反应,根据(AChE)活性受到抑制的情况,可判断出样品中是否含有有机磷与氨基甲酸酯类农药。
但乙酰胆碱酯酶抑制法测定范围有限,目前仅用于蔬菜、水果中有机磷和氨基甲酸酯类农残的检测,且该方法对常见农药的检出限为0.3~3.5mg/kg,均高于相应农药的最大残留限量,因此只能作为初步定性筛选检测法引。
3.3 植物酶抑制法近年来发展了用植物水解酶替代乙酰胆碱酯酶的分析方法,植物酶抑制法的原理是利用植物水解酶水解2,6一二氯乙酰靛酚,根据反应溶液在水解前后颜色的变化,用眼睛或仪器辨别农药对酶的抑制程度,在有机磷或氨基甲酸酯类农药存在时,植物水解酶的活性受抑制,靛酚的蓝色变浅。
4、免疫分析法免疫分析法(IA) IA是将免疫反应与现代测试手段相结合而建立的超微量测定技术。
任何免疫分析都是以抗原体的特异性结合为基础的。
根据引入示踪物的不同,免疫分析法可分为荧光免疫测定法(FIA)、酶免疫测定法(EIA)、放射免疫测定法(RIA)和流动注射免疫测定法(BIA)。
自1983年以来,随着EIA的稳定性和灵敏度不断改善,它在农药分析中得以广泛应用,尤其是酶免疫吸附测定法(ELISA)应用最广泛,现已成为首选方法。
由于氨基甲酸酯类农药多为低分子量的小分子,必须与载体结合(如蛋白质)形成抗原,才能免疫兔、羊等动物制备多克隆抗体(PcAb)或免疫小鼠制备单克隆抗体(McAb),再通过被测定物与特定抗体之间相互作用,进行定性定量测定。
ELISA是将免疫技术与现代测试手段相结合而建立的一种超微量的测定技术,其核心技术是抗原抗体的特异性反应。
能否合成稳定,具有良好免疫原性.载体蛋白结合物是整个农药残留免疫学检测技术研究的关键。
在ELISA检测过程中,酶催化具有高度的放大作用,不仅可以定性分析而且可以进行定量分析。
目前市场上能够买到的分析氨基甲酸酯类农药的ELISA试剂盒有多种,其中主要是涕灭威、西维因、呋哺丹及其代谢产物试剂盒。
5、生物传感器生物传感器通常是由一种生物活性物质制作的敏感部件与能量转换器紧密配合,对特定种类化学物质或生物活性物质具有选择性和可逆响应的分析装置。
大多数用于农药残留分析的生物传感器是基于乙酰胆碱酯酶被一种或几种分析物的抑制作用的检测。
使用酶抑制剂检测农药残留量, 从20 世纪50 年代开始陆续有报道,多是采用pH 技术,其原理是酶的抑制作用可以通过pH 的测定进行检测, pH 的变化反映为酶活性(如产生的醋酸量)的变化。
如样品中呋喃丹或西维因对酶活性的抑制作用反映为产生的醋酸量减少,从而可以通过测定pH 值进行测定。
最近,电流乙酰胆碱酯酶生物传感器已经成为检测不同介质中的某些氨基甲酸酯类农药(如西维因、呋喃丹等)的一种常用方法。
这种方法的原理是底物酶水解产生的化合物在电极表面被氧化,从而形成稳定的电流,当乙酰胆碱酯酶的活性被农药所抑制, 则水解产物的量会降低,电流将发生变化。
黄文风等[ 9] 报道了一种在蔬菜中农药残留的快速灵敏的检测方法,通过比较特定的酶催化显色反应的动力学曲线,直接测定有机磷和氨基甲酸酯类农药对乙酰胆碱酯酶的抑制率,以此求得农药残留水平,该方法对水样中西维因的检测限为0. 04 μg/mL ,蔬菜中西维因的检测限为 2. 4 μg/ g,但受温度、pH 值的影响较大。
另一种生物传感器为化学发光酶传感器。
乙酰胆碱酯酶、胆碱氧化酶及过氧化酶被固定在异丁烯酶珠上通过乙酰胆碱酯酶产生的胆碱与胆碱氧化酶反应,产生的过氧化氢通过鲁米诺过氧化酶发光反应进行测定,涕灭威的检测限可达4 μg/ L[ 1] 。
6、联用技术6.1 气质联用技术(GC-MS)色谱法具有极强的分离能力,但仅以保留时间定性,因此它对未知化合物的定性能力不佳,需要另外的方法来确证。
GC-MS法是近年来发展起来的大型仪器,其不仅具有气相色谱法的高分离效能,还具有质谱对于化合物结构的准确鉴定特点,可同时达到定性定量的检测目的。
曹艳平等[10]以气相色谱-质谱选择离子监测方式分析检测蔬菜水果中12种有机磷和4种氨基甲酸酯农药残留,16种农药均在14min内流出,分离良好,农药标准的线性范围在0.01~15μg/ml,相关系数r均在0.99以上,低、高二种浓度加标回收率均在65.3%~108.2%之间。
6.2 液质联用技术(HPLC-MS/HPLC-MS/MS)液质联用技术是以喷雾离子源和大气压化学电离源等接口技术将液相色谱和质谱串联起来作为整机使用的检测技术,在分析对热不稳定,相对分子质量较大,难以用气相色谱分析的化合物检测应用较为成功,具有检测灵敏度高、选择性好、定性定量同时进行、结果可靠等优点,是一种高效率、高可靠性的分析技术。
陈笑梅等[11]采用HPLC-ESI(+)-MS/MS同时检测粮谷中9种氨基甲酸酯类农药残留量。
农药在0.1~100μg/L 范围内线性良好,相关系数为0.9986~0.9998。
在0.001~0.05mg/kg浓度范围内,平均加标回收率在73.40%~102.01%之间;相对标准偏差为1.25%~9.94%。
该方法简便、快速、灵敏、净化效果好。
7、展望随着社会的进步,人们生活水平的不断提高,对食品的安全性要求也相应地提高了。
但随着氨基甲酸酯类农药的持续应用和新产品的开发,氨基甲酸酯类农药残留检测方法的研究依旧是引起广泛关注的课题。
针对食品中氨基甲酸酯类农残的分析,SFE、MSPD等一些新的样品前处理技术将受到青睐的同时,创建高效、简单、快速的色质联用为主的在线分析技术将是未来的重点研究方向。
氨基甲酸酯类农药残留检测技术将向更快、更准、更环保的方向开发和推广应用。
不同介质中的氨基甲酸酯类农药残留的检测分析方法一直是令人感兴趣的课题,至今已发展了多种检测技术。
目前各种方法均有各自的优点,但同时也不同程度地存在不足,应用时应根据实际条件和研究需要选择相应的检测技术。
[1]李志伟,梁丹,张建夫.氨基甲酸酯类农药残留分析方法的研究进展. 华中农业大学学报,2008,27(5):691-695.[ 2 ] 蒋淑艳,间接邻菲罗啉光度法测定氨基甲酸酯农药[ J] .烟台大学学报(自然科学与工程版),1995( 1):19-21[3]刘长武,刘潇威,翟广书,等.固相萃取-高效液相色谱法测定蔬菜、水果中的氨基甲酸酯杀虫剂及其代谢物残留色谱,2003,21(3):255-257[4]杨大进, 方从容,张莹.蔬菜中有机磷和氨基甲酸酯农药多残留的测定[ J ] .中国食品卫生杂志, 1997, 9( 5): 9-11[5]陈霞,张雪梅,杨华梅,等. 凝胶渗透色谱-气相色谱法测定蔬菜中24种有机磷和氨基甲酸酯类农药残留. 中国卫生检验杂志,2009,19(1):75-76[6]马纪伟,闫冬良.HPLC法测定猕猴桃中氨基甲酸酯类农药残留量. 安徽农业科学,2008,36(26):11195-11196[7吴莉,张世琏.呋喃丹的薄层扫描定量分析研究. 分析科学学报,2006,22(1):113.[8]袁振华,查捷,蒋罗章.大型水蚤生物测试技术在监测蔬菜中农药残留的应用研究口].卫生研究,1995,24(特辑):109~110.[9]黄文风, 蔡琪,林而立, 等.酶催化动力学光度法快速测定蔬菜中农药残留毒性[ J ] .现代科学仪器, 2000,( 2): 29- 32.[10]曹艳平,王大威. 蔬菜水果中有机磷和氨基甲酸酯气相色谱-质谱选择离子测定. 中国卫生检验杂志,2007,17(12):2125-2126.[11]陈笑梅,胡贝贞,刘海山,等. 高效液相色谱-串联质谱法测定粮谷中9种氨基甲酸酯类农药残留. 分析化学研究简报,2007,35(1):106-110.。