射线检测技术方法与介绍
电离室
分为脉冲电离室和电流电离室 脉冲电离室前者可记录单个辐射粒子的 电离辐射,主要用于重带电粒子的能量 和注量或注量率的测量。 电流电离室用来记录大量辐射产生的平 均效应,用于测量X射线,γ光子束,β射 线和中子束的注量、注量率和剂量。
2.1.5 平板探测器
碘化铯/非晶硅型(间接能量转换) 非晶硒型(直接能量转换) CCD型
盖革计数器。图中左下角的 黑色管是其探测器——盖革管
盖革计数器历史
1908年由德国物理学家汉斯· 盖革和著名的 英国物理学家卢瑟福在α粒子散射实验中, 为了探测α粒子而设计的。 1928年,盖革和学生米勒(Walther Müller) 进行了改进,使其可以用于探测所有的电 离辐射。 1947年,美国人Sidney H. Liebson在其博 士学位研究中又对盖革计数器做了进一步 改进,使得盖革管使用较低的工作电压, 并且显著延长了其使用寿命。
碘化铯/非晶硅型
优点: 转换效率高 动态范围广 空间分辨率高 在低分辨率区X线吸收率高(原因是其原 子序数高于非晶硒) 环境适应性强
非晶硒型
结构 非晶硒层(amorphous Selemium,a-Se)加 rray ,TFT)构成
2.1 射线探测方法
主要内容
概述 2.1.1 感光胶片 2.1.2 闪烁体计数器 2.1.3 气体探测器--盖革计数器 2.1.4气体探测器--电离室 2.1.5 平板探测器 2.1.6 IP成像板 2.1.7 半导体探测器
概述
利用射线中的带电粒子或电磁波在物质中 所引起的原子或分子的激发或电离进行的 。 射线与物质作用的各种特性 胶片感光特性、使某些荧光物质发出荧光 的效应和使物质电离的效应等。
这些离子向周围区域自由扩散。扩散过程中,电 子和正离子可以复合重新形成中性分子。
若在构成气体探测器的收集极和高压极上加直流 的极化电压V,形成电场,那么电子和正离子就 会分别被拉向正负两极,并被收集。
随着极化电压V逐渐增加,气体探测器的工作状 态就会从复合区、饱和区、正比区、有限正比区 、盖革区(G - M区)一直变化到连续放电区。
盖革计数器构造及原理
根据射线对气体的电离性质设计成的。 盖革管两端用绝缘物质密闭并充入稀薄气体(通常 是掺加了卤素的稀有气体,如氦、氖、氩等), 盖革管轴线上安装有一根金属丝电极
在金属管壁和金属丝电极之间加上略低于管内气 体击穿电压的电压。通常状态下,管内气体不放 电。 当有高速粒子射入管内时,粒子的能量使管内气 体电离导电,在丝极与管壁之间产生迅速的气体 放电现象,从而输出一个脉冲电流信号。
2.1.6 IP成像板
当掺杂2价铕离子的氟卤化钡晶体受到X线照射, 产生电离形成电子空穴对 空穴被PSL络合体俘获(空穴究竟被什么离子俘 获目前尚未完全明了),电子则被已形成的X- 空位捕获,形成亚稳态(较高能态)的荧光中心 此后,当采用特定波长的光(二次激发光)照射 该激活的、掺杂2价铕离子的氟卤化钡晶体时,F 心吸收二次激发光,将捕获的电子释放,并把能 量转移给2价铕离子(转移途经目前尚未明了), 2价铕离子向低能态跃迁发出荧光。 荧光的强弱与第一次激发的能量呈线性正相关
原理
光导半导体直接将接收的X射线光子转换成 电荷,再由薄膜晶体管阵列将电信号读出 并数字化。 代表:岛津、AnRad、Hologic公司
非晶硒型
不足 对X线吸收率低,在低剂量条件下图像质 量不能很好的保证。 硒层对温度敏感,使用条件受限,环境 适应性差。 怕冷
CCD型
原理:间接转换探测器(通过闪烁体材料将射线 转换为可见光)。主要是信号电荷的产生、存储 、转移、检测。 生产工艺难:CCD面积难以做大,需多片才能获 得足够的尺寸,这便带来了拼接的问题,导致系 统复杂度升高可靠性降低,且接缝两面有影像偏 差。
像素大小由CCD的最小体积决定,而CCD体积制 造工艺受限。
2.1.6 IP成像板
2.1.6 IP成像板
工作原理 某些物质在第一次受到光照射时,能将一 次激发光所携带的信息储存下来,当再次 受到光照射时,能发出与一次激发光所携 带信息相关的荧光,这种现象被称之为激 励发光(PSL)。 掺杂2价铕离子的氟卤化钡结晶( BaFBr:Eu2+ ),在已知的PSL物质中光激 励发光作用最强,因此被选作IP的发光材料 。
闪烁体计数器作用
能探测各种带电粒子,还能探测各种不带 电的核辐射;不仅能探测核辐射是否存在 ,还能鉴别它们的性质和种类;不但能计 数,还能根据脉冲幅度确定辐射粒子的能 量。 多用于核物理和粒子物理实验中。
2.1.3 盖革计数器(Geiger counter)
又称盖革-米勒计数器(Geiger-Müller counter),是一种用于探测电离辐射的粒子 探测器,通常用于探测α 粒子和β 粒子。
2.1.1 感光胶片
原理 利用射线照射胶片时将溴化银中的银离子 还原为银。
2.1.2 闪烁体计数器
基本原理 光子作用于荧光物质时,使荧光物质发出荧光, 利用光电倍增管将荧光转换为电脉冲,再用电子 测量仪器把它放大和记录下来。 由闪烁体和光电倍增管构成 光电倍增原理 把光子转换成电子,把微弱荧光按比例转变为电 信号。 闪烁体 NaI(加微量Tl)、CSI(加微量Tl)、ZnS(加微量Ag ) 等无机盐晶体和蒽、茋、对联三苯等有机晶体,
盖革计数器的原理图
主要缺点:不能鉴别粒子的能量和粒子的 种类,不能进行快计数。
2.1.4 电离室
电离室即工作在饱和区的气体探测器。 由处于不同电位的电极和限定在电极之间 的气体组成,通过收集因辐射在气体中产 生的电子或离子运动而产生的电讯号来定 量测量电离辐射的探测器。
电离室的原理
受射线照射时,射线与气体中的分子作用,产生 由一个电子和一个正离子组成的离子对。
非晶硅型
碘化铯/非晶硅型
结构 碘化铯 ( CsI ) + a-Si + TFT 硫氧化钆 ( Gd2O2S ) + a-Si + TFT 原理 X射线先经荧光介质材料转换成可见光,再 由光敏元件将可见光信号转换成电信号, 最后将模拟电信号经A/D转换成数字信号。 典型企业代表:Canon和瓦里安公司