当前位置:文档之家› 直流电机和同步电机参数实验大纲资料

直流电机和同步电机参数实验大纲资料

直流电动机参数测量实验大纲一、实验目的1、掌握直流电动机参数的测定方法:用伏安法测量直流电动机的冷态电枢回路电阻和励磁回路电阻。

K。

2、获得直流电机的电动势常数E3、将实验中参数记录并作为下一步仿真实验模型中的参数。

二、实验原理1、直流电动机的物理模型直流电机是利用载流导体在磁场中会受到力的作用原理制成的,其物理模型如下图1.1所示。

图中固定部分有磁铁(称作主磁极)和电刷。

转动部分有环形铁心和绕在环形铁心上的绕组 (其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的) 。

图1.1表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)图1.1 直流发电动机物理模型上设电枢铁心。

定子与转子之间有一气隙。

在电枢铁心上放置了两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。

换向片之间互相绝缘,由换向片构成的整体称为换向器。

换向器固定在转轴上,换向片与转轴之间亦互相绝缘。

在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。

2、直流电动运行原理图1.2为直流电动机运行原理图,给两个电刷加上直流电源,如图1.2(1)所示,则有直流电流从电刷B、换向片E流入,经过线圈abcd,从换向片F、电刷A流出,根据电磁力定律,载流导体ab和cd受到电磁力的作用,其方向可由图1.2 直流电动机运行原理左手定则判定,两段导体受到的力形成了一个转矩,使得转子顺时针转动。

当转子转到如图1.2(2)所示的位置,电刷A、B和换向片E、F间的间隙接触,此时无电流通过,但载流导体ab和cd由于惯性继续顺时针转动,越过间隙之后电刷A与换向片E,电刷B与换向片F接触,如图1.2(3),直流电流从电刷B、换向片F流入,在线圈中的流动方向是dcba,从换向片E、电刷A流出。

此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。

当转子转到如图1.2(3)所示的位置,电刷A、B和换向片E、F间的间隙接触,此时无电流通过,但载流导体ab和cd由于惯性继续顺时针转动,越过间隙之后电刷B与换向片E,电刷A与换向片F接触,如上图1.2(1)。

转子将不断重复上述过程,这就是直流电动机的工作原理。

外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。

3、直流电动机数学方程本实验采用的直流电动机的磁极实际是通过励磁电流流经励磁绕组产生的,电动机接线如下图所示:图1.3 直流电动机接线示意图直流电动机电枢回路电压方程为:E dtdi L i R u a a a a ++=a ωE K E =或n 602E K E π=F F E L K i a = 式中,a u 、a i 为直流电机电枢电压电流;a L R a 、为电枢回路电阻和电感;E为电枢感应电动势;)(为电机转子机械角速度s rad /ω;n 为转子转速(r/min );E K 为电动势常数;aF L 为磁场和电枢绕组间互感。

直流电动机励磁回路电压方程为:dtdi L R F F F F F +=i u 式中,为、F F u i 直流电机励磁电压和电流;F F L R 、为励磁回路电阻和电感。

直流电动机转矩方程为:ωωB dtd JT T L +=-e a T e i K T =式中,J 为转动惯量(kg 2m ⋅);B 为粘滞摩擦系数(N.m.s );T K 为转矩系数,。

E T K K =根据以上方程可知,对直流电动机实验中需要测量的参数分别为:电枢回路电阻a R 、励磁回路电阻F R 。

本实验用伏安法测电枢及励磁的冷态直流电阻。

将电机在室内放置一段时间,用温度计测量电机绕组端部或铁心的温度。

当所测温度与室温之差不超过2K ,即为实际冷态。

记录此时的温度和测量定子绕组的直流电阻,可用于计算基温定子相电阻。

三、实验设备直流电动机:220v ,12.4A ,1500r/m ;滑动变阻器:300欧,3A ;电压表:300V/75V 档;直流电流表:30A 档;功率表:5A ,300V 档;转速计:测量转速;导线若干,开关,电叉。

四、实验电路和实验步骤1、伏安法测直流电机绕组冷态电阻1、实验接线图图1.5 伏安法测绕组电阻2、实验步骤(1)按实验接线图将各元器件可靠连接。

测量电枢绕组时,不接入励磁绕组。

(2)测量室温和电机铁芯温度和室温并记录,二者比较确认电机处于冷态。

(3)将滑动变阻器R 调至最大值,然后接通电源,调节R 使实验电流为变阻器额定电流3A ,测量此时绕组的电压值和电流值并记录于表1中。

(4)将绕组旋转 120机械角,重复测量一次并记录,之后再将绕组旋转 120测量一次并记录。

2、伏安法测直流电机励磁绕组冷态电阻1、实验接线图图1.6 伏安法测励磁绕组电阻2、实验步骤(1)按实验接线图将各元器件可靠连接。

测量励磁电枢绕组时,不接入绕组。

(2)将滑动变阻器R 调至最大值,然后接通电源,调节滑动变阻器R 使实验电流接近励磁电流额定值,测此时绕组电压值和电流值,并记录于附表2中。

3、伏安法测直流电机反电动势系数1、实验接线图图1.7 伏安法测绕组反电动势2、实验步骤(1)按实验接线图将各元器件可靠连接。

(2)将滑动变阻器R1、R2调至最大值,然后接通电源,调节R1、R2使电机运转至某一稳定转速N1,并记录至表3,读取电压V1、电流表A1的值并记录至表3。

(3)调节R1、R2,使电机稳定运行于新的转速N2,记录至表3,再次读取电压V1、电流表A1的值并记录至表3。

五、实验数据记录表1 伏安法测直流电机电枢绕组冷态直流电阻记录表格表2 伏安法测直流电机励磁绕组冷态直流电阻记录表格表3 电势常数记录表格六、实验中的注意事项(1)作为电动机运行时,电枢的电势a E 与电流a I 方向相反,电枢电路的电压平衡式为:a a a E U I r =-。

当断开电机励磁时,将不会产生反电势,即0a E =,由此a U r I=。

此时加在电枢上的电压不易过大,这是因为当电压过大时,电枢电阻发热大且气隙磁势易于饱和。

此外,转子转速n 正比于电压U ,当U 过大时,n 过大不利于堵转。

加在电枢上的电压大约在25V 左右即可。

(2)在测量电机冷态电枢电阻时,为防止因试验电流过大而引起绕组的温度上升,应调节滑动变阻器使试验电流不超过电机额定电流的10%。

(3)在测量同步电机电枢绕组时,由于相间电阻值会有所差异,所以应间隔120°测3个数据,然后取其平均值作为定子绕组电阻。

(4)测试过程中应高度重视人身安全,一定要确认无人触碰裸露导线、接线端子的情况下方能合闸供电。

当要改接导线或进行其他涉电操作时,首先应断开电源。

(5)注意保护设备仪器不受损害,接线完毕后应仔细检查,防止错接漏接,严格按照设备、仪器操作规程进行操作,严禁擅自改变测量方案,严禁进行不熟悉的操作。

同步发电机参数测量实验大纲一、实验目的1、掌握用转差法测定同步发电机的直轴同步电抗d X 、交轴同步电抗q X 的方法。

2、掌握用伏安法测定同步电机电枢绕组实际冷态直流电阻的方法。

3、掌握用静止法测超瞬变电抗''d X 、''q X 或瞬变电抗‘d X 、’d X 的方法。

4、将实验中参数记录并作为下一步仿真实验模型中的参数。

二、实验原理1、同步发电机物理模型同步发电机是利用导体在磁场中运动时会产生感应电动势的原理制成的。

转场式同步发电机物理模型如图2.1所示:其定子铁心的内圆均匀分布着定子槽,槽内嵌放着按一定规律排列的三相对称交流绕组。

这种同步电机的定子又称为电枢,定子铁心和绕组又称为电枢铁心和电枢绕组。

转子铁心上装有制成一定形状的成对磁极,磁极上绕有励磁绕组,通以直流电流时,将会在电机的气隙中形成极性相间的分布磁场,称为励磁磁场(也称主图2.1 转场式同步发电动机物理模型磁场、转子磁场)。

气隙处于电枢内圆和转子磁极之间,气隙层的厚度和形状对电机内部磁场的分布和同步电机的性能有重大影响。

2、同步发电机工作原理工作时,发电机励磁系统将给励磁绕组供电,使之产生一磁场,原动机带动励磁绕组一起旋转,使定子绕组相对磁场旋转,作切割磁力线运动,从而产生感应电动势。

调节励磁电流的大小可以调整电机的工作参数。

3、同步发电动机数学方程同步发电机电压方程和磁链方程为:式中,需要测量定子绕组冷态电阻,本实验用伏安法,数据记录于表一 各种电抗是定量分析同步电机性能的有用参数,下面分别介绍:1、同步电抗d X 、q X同步电抗s X (对隐极电机)或d X 、q X (对凸极电机)均由各自对应的电枢反应电抗和定子漏电抗合成。

其中d X 或q X 的求取如前述实验,可通过空载、稳态短路实验求出。

而利用转差率实验可以同时测出凸极式同步电机的直轴、交轴同步电抗d X 、q X 的不饱和值。

转差率实验的作法是:把被试同步电机的励磁绕组开路,即不加励磁;原动机拖动转子以接近同步速旋转,约有的转差率;定子绕组外施低电压约为额定电压的5%-15%左右,以避免转子被拖入同步,但其相序须保证电枢旋转磁场的转向与转子转向一致。

此时定子旋转磁场便以转差率速度切割转子。

当定子磁场轴线与转子直轴重合时,电抗达最高值,电枢电流便有最小值。

当定子磁场轴线与转子的交轴重合时,电抗达最低值,而电枢电流便有最大值。

由于线路中电压降的影响,随着电枢电流的变化,定子绕组上测得的电压也有相应的、较小幅度的变动,显然电枢电流有最小值时电压为最大,电枢电流有最大值时电压为最小。

电枢电流和端电压波动的频率正比于转差率。

由于转差率很低,电流表和电压表的指针摆动位置可以被清楚地读取,即记录出各最大电流,电压和最小电流、电压值。

设读取的数据为每相值,则每相同步电抗为:2、超瞬变电抗''d X 、‘'q X 或瞬变电抗‘d X 和‘q X 瞬态短路定子绕组会产生巨大的冲击电流。

巨大冲击电流的主要危害是产生极大的电磁力,使绕组端部变形甚至拉断。

瞬态短路时会产生巨大电流的原因是当定子电流增加时,定子产生的磁通增加,于是在转子绕组中产生变压器电势,转子绕组中便有电流流过,转子电流对定子磁通有阻尼作用,使定子磁通减小,所以定子电抗变小,于是定子电流剧增。

同步发电机瞬态短路时,转子上励磁绕组及阻尼绕组都感应了电流,因此励磁绕组及阻尼绕组对电枢反应磁通a φ的进入,产生反抗作用,使电枢反应磁通被挤到它们的漏磁路径上,电枢反应磁通a φ的路经要经过气隙磁阻ad R ,励磁绕组漏磁阻fa R 及阻尼绕组漏磁阻za R ,考虑到漏磁通,并用相应的磁导表示磁阻所得到的等效磁导为:对应的电抗称为直轴超瞬变电抗,其表达式为:若把同步发电机的定子绕组引线端通过负载电阻短路或在电网上某处短路,则由于线路阻抗的存在使电枢磁势不仅有直轴分量,还有交轴分量。

相关主题