有限元分析基础教程Fundamentals of Finite Element Analysis(ANSYS算例)曾攀清华大学2008-12有限元分析基础教程曾攀有限元分析基础教程Fundamentals of Finite Element Analysis曾攀(清华大学)内容简介全教程包括两大部分,共分9章;第一部分为有限元分析基本原理,包括第1章至第5章,内容有:绪论、有限元分析过程的概要、杆梁结构分析的有限元方法、连续体结构分析的有限元方法、有限元分析中的若干问题讨论;第二部分为有限元分析的典型应用领域,包括第6章至第9章,内容有:静力结构的有限元分析、结构振动的有限元分析、传热过程的有限元分析、弹塑性材料的有限元分析。
本书以基本变量、基本方程、求解原理、单元构建、典型例题、MATLAB程序及算例、ANSYS算例等一系列规范性方式来描述有限元分析的力学原理、程序编制以及实例应用;给出的典型实例都详细提供有完整的数学推演过程以及ANSYS实现过程。
本教程的基本理论阐述简明扼要,重点突出,实例丰富,教程中的二部分内容相互衔接,也可独立使用,适合于具有大学高年级学生程度的人员作为培训教材,也适合于不同程度的读者进行自学;对于希望在MATLAB程序以及ANSYS平台进行建模分析的读者,本教程更值得参考。
本基础教程的读者对象:机械、力学、土木、水利、航空航天等专业的工程技术人员、科研工作者。
目录[[[[[[\\\\\\【ANSYS算例】3.3.7(3) 三梁平面框架结构的有限元分析 1 【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较 3 【ANSYS算例】5.3(8) 平面问题斜支座的处理 6 【ANSYS算例】6.2(2) 受均匀载荷方形板的有限元分析9 【ANSYS算例】6.4.2(1) 8万吨模锻液压机主牌坊的分析(GUI) 15 【ANSYS算例】6.4.2(2) 8万吨模锻液压机主牌坊的参数化建模与分析(命令流) 17 【ANSYS算例】7.2(1) 汽车悬挂系统的振动模态分析(GUI) 20 【ANSYS算例】7.2(2) 汽车悬挂系统的振动模态分析(命令流) 23 【ANSYS算例】7.3(1) 带有张拉的绳索的振动模态分析(GUI) 24 【ANSYS算例】7.3(2) 带有张拉的绳索的振动模态分析(命令流) 27 【ANSYS算例】7.4(1) 机翼模型的振动模态分析(GUI) 28 【ANSYS算例】7.4(2) 机翼模型的振动模态分析(命令流) 30 【ANSYS算例】8.2(1) 2D矩形板的稳态热对流的自适应分析(GUI) 31 【ANSYS算例】8.2(2) 2D矩形板的稳态热对流的自适应分析(命令流) 33 【ANSYS算例】8.3(1) 金属材料凝固过程的瞬态传热分析(GUI) 34 【ANSYS算例】8.3(2) 金属材料凝固过程的瞬态传热分析(命令流) 38 【ANSYS算例】8.4(1) 升温条件下杆件支撑结构的热应力分析(GUI) 39 【ANSYS算例】8.4(2) 升温条件下杆件支撑结构的热应力分析(命令流) 42 【ANSYS算例】9.2(2) 三杆结构塑性卸载后的残余应力计算(命令流) 45 【ANSYS算例】9.3(1) 悬臂梁在循环加载作用下的弹塑性计算(GUI) 46 【ANSYS算例】9.3(2) 悬臂梁在循环加载作用下的弹塑性计算(命令流) 49 附录 B ANSYS软件的基本操作52 B.1 基于图形界面(GUI)的交互式操作(step by step) 53 B.2 log命令流文件的调入操作(可由GUI环境下生成log文件) 56 B.3 完全的直接命令输入方式操作56 B.4 APDL参数化编程的初步操作57【ANSYS 算例】3.3.7(3) 三梁平面框架结构的有限元分析如图3-19所示的框架结构,其顶端受均布力作用,用有限元方法分析该结构的位移。
结构中各个截面的参数都为:,,。
113.010Pa E =×746.510m I −=×426.810m A −=×在ANSYS 平台上,完成相应的力学分析。
图3-19 框架结构受一均布力作用解答:对该问题进行有限元分析的过程如下。
1 基于图形界面(GUI)的交互式操作(step by step)(1) 进入ANSYS(设定工作目录和工作文件)程序 →ANSYS → ANSYS Interactive →Working directory (设置工作目录) →Initial jobname (设置工作文件名): beam3→Run → OK(2) 设置计算类型ANSYS Main Menu: Preferences… → Structural → OK(3) 选择单元类型ANSYS Main Menu: Preprocessor →Element Type →Add/Edit/Delete… →Add… →beam :2D elastic 3 →OK (返回到Element Types 窗口) →Close (4) 定义材料参数ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic → Isotropic: EX:3e11 (弹性模量) → OK → 鼠标点击该窗口右上角的“U ”来关闭该窗口 (5) 定义实常数以确定平面问题的厚度ANSYS Main Menu: Preprocessor →Real Constants… →Add/Edit/Delete →Add →Type 1 Beam3→ OK →Real Constant Set No: 1 (第1号实常数), Cross-sectional area:6.8e-4 (梁的横截面积) →OK →Close (6) 生成几何模型生成节点ANSYS Main Menu: Preprocessor →Modeling →Creat →Nodes → In Active CS →Node number 1 → X:0,Y:0.96,Z:0 →Apply →Node number 2 → X:1.44,Y:0.96,Z:0 →Apply →Node number 3 → X:0,Y:0,Z:0→Apply →Node number 4 → X:1.44,Y:0,Z:0→OK生成单元ANSYS Main Menu: Preprocessor → Modeling → Create →Element → Auto Numbered → Thru Nodes → 选择节点 1、2(生成单元1)→ apply → 选择节点 1、 3(生成单元2)→ apply →选择节点 2、4(生成单元3)→OK(7) 模型施加约束和外载左边加X方向的受力ANSYS Main Menu: Solution → Define Loads → Apply →Structural → Force/Moment → On Nodes →选择节点1→ apply →Direction of force: FX →V ALUE:3000 → OK→上方施加Y方向的均布载荷ANSYS Main Menu: Solution → Define Loads → Apply →Structural → Pressure →On Beams →选取单元1(节点1和节点2之间)→ apply →V ALI:4167→V ALJ:4167→OK左、右下角节点加约束ANSYS Main Menu: Solution → Define Loads → Apply →Structural → Displacement → On Nodes →选取节点3和节点4 → Apply → Lab:ALL DOF → OK(8) 分析计算ANSYS Main Menu: Solution → Solve → Current LS →OK → Should The Solve Command be Executed? Y→ Close (Solution is done! ) →关闭文字窗口(9) 结果显示ANSYS Main Menu: General Postproc → Plot Results →Deformed Shape … →Def + Undeformed → OK (返回到Plot Results)(10) 退出系统ANSYS Utility Menu: File→ Exit …→ Save Everything→OK(11) 计算结果的验证与MATLAB支反力计算结果一致。
2 完全的命令流!%%%%%%%%%% [典型例题]3_3_7(3) %%% begin %%%%%/ PREP7 !进入前处理ET,1,beam3 !选择单元类型R,1,6.5e-7,6.8e-4 !给出实常数(横截面积、惯性矩)MP,EX,1,3e11 !给出材料的弹性模量N,1,0,0.96,0 !生成4个节点,坐标(0,0.96,0),以下类似N,2,1.44,0.96,0N,3,0,0,0N,4,1.44,0,0E,1,2 !生成单元(连接1号节点和2号节点) ,以下类似E,1,3E,2,4D,3,ALL !将3号节点的位移全部固定D,4,ALL !将4号节点的位移全部固定F,1,FX,3000 !在1号节点处施加x方向的力(3000)SFBEAM,1,1,PRESS,4167 !施加均布压力FINISH !结束前处理状态/SOLU !进入求解模块SOLVE !求解FINISH !结束求解状态/POST1 !进入后处理PLDISP,1 !显示变形状况FINISH !结束后处理!%%%%%%%%%% [典型例题]3_3_7(3) %%% end %%%%%【ANSYS算例】4.3.2(4) 三角形单元与矩形单元的精细网格的计算比较针对【典型例题】4.3.2(3)的问题,在ANSYS平台上,进行三角形单元与矩形单元的精细网格的划分,完成相应的力学分析。
(a)采用三角形单元的划分(b)采用四边形单元的划分图4-11 基于ANSYS平台的精细网格划分(每边划分10段)解答:下面基于ANSYS平台,进行三角形单元与矩形单元的精细网格的划分,见图4-11。
对该问题进行有限元分析的过程如下。
1 基于图形界面(GUI)的交互式操作(step by step)(1) 进入ANSYS(设定工作目录和工作文件)程序→ ANSYS → ANSYS Interactive → Working directory(设置工作目录)→ Initial jobname (设置工作文件名): TrussBridge→ Press → Run → OK(2) 设置计算类型ANSYS Main Menu: Preferences… → Structural → OK(3) 定义分析类型ANSYS Main Menu: Preprocessor → Loads → Analysis Type → New Analysis→ STATIC → OK (4) 定义材料参数ANSYS Main Menu: Preprocessor → Material Props → Material Models →Structural → Linear → Elastic → Isotropic → EX: 1(弹性模量), PRXY: 0.25(泊松比)→ OK →鼠标点击该窗口右上角的“U”来关闭该窗口(5)定义单元类型ANSYS Main Menu: Preprocessor → Element Type → Add/Edit/Delete... → Add…→ Structural Solid: Quad 4node 42 → OK(返回到Element Types窗口)→ Close(6)设置为带厚度的平面问题ANSYS Main Menu: Preprocessor →Real Constants… →Add/Edit/Delete →Add →Type 1→ OK→Real Constant Set No: 1 (第1号实常数), THK: 1 (平面问题的厚度)→OK →Close(7) 定义实常数以确定厚度ANSYS Main Menu: Preprocessor → Real Constants…→ Add…→ Type 1 Plane42 → OK → Real Constants Set No: 1(第1号实常数), Thickness: 1(平面问题的厚度)→ OK → Close(8) 构造模型生成几何模型ANSYS Main Menu: Preprocessor → Modeling → Create → Keypoints → In Active CS →Keypoint number:1,X,Y,Z Location in active CS:0,0,0 → Apply →(同样方式输入其余3个特征点坐标,分别为(1,0,0), (1,1,0), (0,1,0) )→ OK连接点生成面ANSYS Main Menu: Preprocessor → Modeling → Create → Areas → Arbitrary → Through KPs → Min,Max,Inc: 1,4,1 →OK(9) 设定模型材料ANSYS Main Menu: Preprocessor → Modeling → Create → Elements → Elem Attributes →MAT: 1 ,TYPE: 1 PLANE42,REAL: 1→OK(10) 网格划分ANSYS Utility Menu: Select → Entities → Sele lines → Sele All → OKANSYS Main Menu: Preprocessor → Meshing → Size Cntrls → ManualSize → Lines → All Lines→ Element Sizes on All Seleceted Lines: NDIV: 10 (每一条线分为10段) ,SPACE: 1 → OK →ANSYS Main Menu:Preprocessor → Meshing → MeshTool → Mesh:Areas,Shape:Tri,mapped →Mesh → Pick ALL(11) 模型加约束ANSYS Utility Menu: Select → EverythingANSYS Main Menu: Preprocessor → Loads → Define Loads → Apply → Structural →Displacement → On Keypoints→Min,Max,Inc: 1 → OK →lab2:ALL DOF(约束1号特征点所有方向上的位移) → Apply → Min,Max,Inc: 4 → OK → lab2:UX(约束4号特征点X方向上的位移) →OK(12) 施加载荷在2号特征点上施加负X方向的外载:ANSYS Main Menu: Preprocessor → Loads → Define Loads → Apply → Structural →Force/Moment → On Keypoints → Min,Max,Inc: 2 → OK → Direction of force/mom: FX , Force/moment value: -1 →Apply在3号节点上施加X方向的外载:ANSYS Main Menu: Preprocessor→ Loads → Define Loads → Apply → Structural →Force/Moment→ On Keypoints → Min,Max,Inc: 3 → OK → Direction of force/mom: FX,Force/moment value: 1 → OK(13) 计算分析ANSYS Main Menu: Solution → Solve → Current LS → OK(14) 结果显示显示变形前后的位移:ANSYS Main Menu: General Postproc → Plot Results → Deformed shape → Def + undeformed →OKANSYS Utility Menu: Parameters →Scalar Parameters → Selection下输入NB=NODE(1,0,0) →Accept→(以同样方式输入其余需要的结果参数表达式,分别为NB_UX=UX(NB);NB_UY=UY(NB);NC=NODE(1,1,0);NC_UX=UX(NC) ;NC_UY=UY(NC);STR_ENGY= 0.5*(NB_UX*(-1)+ NC_UX*(1));POTE_ENGY=-0.5*(NB_UX*(-1)+ NC_UX*(1)) ) → CloseANSYS Utility Menu: List → Status → Parameters → All Parameters(显示所有计算结果)(15) 退出系统ANSYS Utility Menu: File → Exit → Save Everything → OK2 完整的命令流!%%%%%%%% [ANSYS算例]4_3_2(4) %%%% begin %%%%%%%/PREP7 !进入前处理ANTYPE,STATIC !设定为静态分析MP,EX,1,1 !定义1号材料的弹性模量MP,PRXY,1,0.25 !设定1号材料的泊松比ET,1,PLANE42 ! 选取单元类型1KEYOPT,1,3,3 !设置为带厚度的平面问题R,1,1 ! 设定实常数No.1,厚度K,1,0,0,0 !生成几何点No.1K,2,1,0,0 !生成几何点No.2K,3,1,1,0 !生成几何点No.3K,4,0,1,0 !生成几何点No.4A,1,2,3,4 !由几何点连成几何面No.1MAT,1 ! 设定为材料No.1TYPE,1 ! 设定单元No.1REAL,1 ! 设定实常数No.1!------设置单元划分LSEL,ALL !选择所有的线LESIZE,all, , ,10, , , , ,1 !将所选择的线划分成10段MSHAPE,1,2D !设置三角形单元!MSHAPE,0,2D !设置四边形单元MSHKEY,1 !设置映射划分AMESH,1 !对面No.1进行网格划分ALLSEL,ALL !选择所有的对象DK,1,ALL ! 对几何点1施加固定的位移约束DK,4,ALL ! 对几何点4施加固定的位移约束FK,2,FX,-1 ! 对几何点2施加外力FX=-1FK,3,FX,1 ! 对几何点3施加外力FX=1FINISH !结束前处理/SOLU !进入求解模块SOLVE !求解FINISH !结束求解/POST1 !进入后处理PLDISP,1 !计算的变形位移显示(变形前与后的对照)NB=NODE(1,0,0) !获取几何位置为(1,0,0) (B点)所对应的节点号码,赋值给NB NB_UX=UX(NB) !获取节点号NB处的位移UX,赋值给NB_UXNB_UY=UY(NB) !获取节点号NB处的位移UY,赋值给NB_UYALLSEL,ALL ! 选择所有的对象NC=NODE(1,1,0) ! 获取几何位置为(1,1,0) (C点)所对应的节点号码,赋值给NC NC_UX=UX(NC) ! 获取节点号NC处的位移UX,赋值给NC_UXNC_UY=UY(NC) !获取节点号NC处的位移UY,赋值给NC_UYSTR_ENGY= 0.5*(NB_UX*(-1)+ NC_UX*(1)) !计算结构系统的应变能POTE_ENGY=-0.5*(NB_UX*(-1)+ NC_UX*(1)) ! 计算结构系统的势能*status,parm !显示所有的参数!%%%%%%%% [ANSYS 算例]4_3_2(4) %%%% end %%%%%以下为计算结果:采用三角形单元(每边分为10段)NAME V ALUE TYPE DIMENSIONS NB 2.00000000 SCALAR NB_UX -9.56063701 SCALAR NB_UY -9.36565959 SCALAR NC 12.0000000 SCALAR NC_UX 9.88621794 SCALAR NC_UY -10.0535107 SCALAR POTE_ENGY -9.72342747 SCALAR STR_ENGY 9.72342747 SCALAR采用四边形单元(每边分为10段)NAME V ALUE TYPE DIMENSIONS NB 2.00000000 SCALAR NB_UX -12.6893715 SCALAR NB_UY -12.6893715 SCALAR NC 12.0000000 SCALAR NC_UX 12.6893715 SCALAR NC_UY -12.6893715 SCALAR POTE_ENGY -12.6893715 SCALAR STR_ENGY 12.6893715 SCALAR根据上面计算的POTE_ENGY 参数,有以下的结果。