当前位置:文档之家› 第一性计算原理

第一性计算原理

Vasp我所用第一原理是基于密度泛函(DFT)的从头计算,是以电子密度作为基本变量(HK定理),通过求解kohn-sham方程,迭代自洽得到体系的基态电子密度,然后求体系的基态性质。

还有一种是基于hartree-fock自洽计算,通过自洽求解HF方程,获得体系的波函数,求基态性质。

KS方程的计算水平达到了HF水平,同时还考虑了电子间的交换关联作用。

关于DFT中密度泛函的Function其实是交换关联泛函,包括LDA,GGA,杂化泛函等等。

一般LDA为局域密度近似,在空间某点用均匀电子气密度作为交换关联泛函的唯一变量,多数为参数化的CA-PZ方案;GGA为广义梯度近似,不仅将电子密度作为交换关联泛函的变量,也考虑了密度的梯度为变量,包括PBE,PE.RPBE等方案。

在处理计算体系中原子的电子态时有两种方法,一种是考虑所有电子叫做全电子法,比如WIEN2K中的FLAPW方法(线性缀加平面波);另一种是只考虑价电子而把芯电子和原子核构成离子实放在一起考虑即赝势法,一般贋势法是选取一个截断半径,截断半径以内波函数变化较平滑,和真实的不同,截断半径以外则和真实情况相同,而且贋势法得到的本征值和全电子法应该相同。

贋势的测试标准应是贋势与全电子法计算结果的匹配度,而不是贋势与实验结果的匹配度,因为和实验结果的匹配可能是偶然的。

关于Ecut的收敛测试。

一般情况下,总能相对于不同Ecut做计算,当截断能增大时总能变化不明显即可。

但是在需要考虑体系应力时,还需要对应力进行收敛测试,而且应力相对于截断能要比总能更为苛刻。

也就是某个截断能下总能已经收敛了,但应力未必收敛。

(力的计算是在能量的基础上进行的,能量对坐标的一阶导数得到力。

计算量的增大和误差的传递导致力收敛慢。

)K点也是需要经过测试的。

何时需要考虑自旋?例如BaTiO3中,三个元素分别为=+2,+4,-2价,离子全部为各个轨道满壳层的结构,此时就不必考虑自旋了。

对于BaMnO3中,由于Mn+4价时d轨道还有电子但未满,因此需要考虑Mn(4s23d5)的自旋,Ba和O就不必考虑。

其实设定自旋就是给定一个原子磁矩的初始值,只在刚开始计算时作为初始值使用。

几何优化包括晶格常数和原子位置的优化,一般情况下也有不优化几何结构直接计算电子结构的,但是对于缺陷形成的计算则往往要优化。

软件大致分为基于平面波的软件,如CASTEP,PWSCF.ABINIT等,计算量大概和体系原子数目的三次方相关;还有基于原子轨道线性组合的软件,比如openmx等,计算量和体系原子数目相关,一般可模拟较多原子数目的体系。

V ASP是使用贋势和平面波基组,进行从头量子力学分子动力学计算的软件包。

V ASP中的方法基于有限温度下的局域密度近似(用自由能作为变量)以及对每一MD步骤用有效矩阵对角方案和有效Pulay混合求解瞬时电子基态。

这些技术可以避免元氏的Car-Parrinello 方法存在的一切问题,而后者是基于电子、离子运动方程同时积分的方法。

离子和电子的相互作用超缓Vanderbilt贋势(US-PP)或投影扩充波(PAW)方法描述。

两种技术都可以相当程度地减少过度金属或第一行元素的每个原子所必须的平面波数量。

V ASP可以很容易地计算力与张力,用于把原子衰减到其瞬时基态中。

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!V ASP程序亮点:1、使用PAW方法或超软贋势,因此基组尺寸非常小,描述材料一般需要原子不超过100个平面波,大多数情况下甚至每原子50个平面波就能得到可靠结果。

2、2. 在平面波程序中,某些部分代码的执行是三次标度。

在VASP中,三次标度部分的前因子足可忽略,导致关于体系尺寸的高效标度。

因此可以在实空间求解势的非局域贡献,并使正交化的次数最少。

当体系具有大约2000个电子能带时,三次标度部分与其它部分可比,因此V ASP可用于直到4000个价电子的体系。

3、V ASP使用传统的自洽场循环计算电子基态。

这一方案与数值方法组合会实现有效、稳定、快速的Kohn-Sham方程自洽求解方案。

程序使用的迭代矩阵对角化方案(RMM-DISS 和分块Davidson)可能是目前最快的方案。

4、V ASP包含全功能的对称性代码,可以自动确定任意构型的对称性。

5. 对称性代码还用于设定Monkhorst-Pack特殊点,可以有效计算体材料和对称的团簇。

Brillouin区的积分使用模糊方法或四面体方法。

四面体方法可以用Blöchl校正去掉线性四面体方法的二次误差,实现更快的k点收敛速度。

1、VASP能够进行哪些过程的计算?怎样设置我们平时最常用的研究方法是做单点能计算,结构优化、从头计算的分子动力学和电子结构相关性质的计算。

一般我们的研究可以按照这样的过程来进行如果要研究一个体系的最优化构型问题可以首先进行结构弛豫优化,然后对优化后的结构进行性质计算或者单点能计算。

如果要研究一个体系的热力学变化过程可以首先进行分子动力学过程模拟,然后在某个温度或压强下进行性质计算或者单点能计算。

如果要研究一个体系的热力学结构变化可以首先在初始温度下进行NVT计算,然后进行分子动力学退火,然后在结束温度下进行性质计算研究。

2、什么是单点能计算(single point energy)?如何计算?跟其它软件类似,VASP具有单点能计算的功能。

也就是说,对一个给定的固定不变的结构(包括原子、分子、表面或体材料)能够计算其总能,即静态计算功能。

单点能计算需要的参数最少,最多只要在KPOINTS文件中设置一下合适的K点或者在INCAR文件中给定一个截断能ENCUT就可以了。

还有一个参数就是电子步的收敛标准的设置EDIFF,默认值为EDIFF=1E-4,一般不需要修改这个值。

具体来说要计算单点能,只要在INCAR中设置IBRION=-1也就是让离子不移动就可以了。

3、什么是结构优化(structure optimization)?如何计算?结构优化又叫结构弛豫(structure relax),是指通过对体系的坐标进行调整,使得其能量或内力达到最小的过程,与动力学退火不同,它是一种在0K下用原子间静力进行优化的方法。

可以认为结构优化后的结构是相对稳定的基态结构,能够在实验之中获得的几率要大些(当然这只是理论计算的结果,必须由实验来验证)。

一般要做弛豫计算,需要设置弛豫收敛标准,也就是告诉系统收敛达成的判据(convergence break condition),当系统检测到能量变化减小到一个确定值时例如EDIFFG=1E-3时视为收敛中断计算,移动离子位置尝试进行下一步计算。

EDIFFG这个值可以为负,例如EDIFFG=-0.02,这时的收敛标准是当系统发现所有离子间作用力都小于给定的数值,如0.02eV/A时视为收敛而中断。

弛豫计算主要有两种方式:准牛顿方法(quasi-Newton RMM-DIIS)和共轭梯度法(CG)两种。

准牛顿方法计算速度较快,适合于初始结构与平衡结构(势能面上全局最小值)比较接近的情况,而CG方法慢一些,找到全局最小的可能性也要大一些。

选择方法为IBRION=1时为准牛顿方法而IBRION=2时为CG方法。

具体来说要做弛豫计算,设置IBRION=1或者2就可以了,其它参数根据需要来设置。

NSW是进行弛豫的最大步数,例如设置NSW=100,当计算在100步之内达到收敛时计算自动中断,而100步内没有达到收敛的话系统将在第100步后强制中止(平常计算步数不会超过100步,超过100步可能是计算的体系出了问题)。

参数通常可以从文献中发现,例如收敛标准EDIFFG等。

有的时候我们需要一些带限制条件的弛豫计算,例如冻结部分原子、限制自旋的计算等等。

冻结部分原子可以在POSCAR文件中设置selective dynamic来实现。

自旋多重度限制可以在INCAR中以NUPDOWN选项来设置。

另外ISIF 选项可以控制弛豫时的晶胞变化情况,例如晶胞的形状和体积等。

费米面附近能级电子分布的smearing是一种促进收敛的有效方法,可能产生物理意义不明确的分数占据态情况,不过问题不大。

在INCAR文件中以ISMEAR 来设置。

一般来说K点只有一两个的时候采用ISMEAR=0,金属体材料用ISMEAR=1或2,半导体材料用ISMEAR=-5等等。

不过有时电子步收敛速度依然很慢,还需要设置一些算法控制选项,例如设置ALGO=Very_Fast,减小真空层厚度,减少K点数目等。

弛豫是一种非常有效的分析计算手段,虽然是静力学计算但是往往获得一些动力学得不到的结果。

INCAR:EDIFF 一般来说,用1E-4或者1E-5都可以,这个参数只是对第一个离子步的自洽影响大一些,对于长时间的分子动力学的模拟,精度小一点也无所谓,但不能太小。

IBRION=0分子动力学模拟IALGO=48一般用48,对于原子数较多,这个优化方式较好。

NSW=1000 多少个时间步长。

POTIM=3 时间步长,单位fs,通常1到3.ISIF=2 计算外界的压力.NBLOCK= 1 多少个时间步长,写一次CONTCAR,CHG和CHGCAR,PCDAT. KBLOCK=50 NBLOCK*KBLOCK个步长写一次XDATCAR.(个离子步写一次PCDAT.)ISMEAR=-1 费米迪拉克分布.SIGMA =0.05单位:电子伏NELMIN=8 一般用6到8,最小的电子scf数.太少的话,收敛的不好.LREAL=AAPACO=10径向分布函数距离,单位是埃.NPACO=200 径向分布函数插的点数.LCHARG=F尽量不写电荷密度,否则CHG文件太大.TEBEG=300 初始温度.TEEND=300终态温度。

不设的话,等于TEBEG.SMASS=-3 NVE ensemble;-1用来做模拟退火。

大于0 NVT系综。

正确:SMASS=1,2,3是没有区别的。

都是NVT ensemble。

SMASS只要是大于0就是NVT系综。

CONTCAR是每个离子步之后都会写出来的,但是会用新的把老的覆盖CHG是在每10个离子步写一次,不会覆盖CHGCAR是在任务正常结束之后才写的。

5、收敛判据的选择结构弛豫的判据一般有两中选择:能量和力。

这两者是相关的,理想情况下,能量收敛到基态,力也应该是收敛到平衡态的。

但是数值计算过程上的差异导致以二者为判据的收敛速度差异很大,力收敛速度绝大部分情况下都慢于能量收敛速度。

这是因为力的计算是在能量的基础上进行的,能量对坐标的一阶导数得到力。

计算量的增大和误差的传递导致力收敛慢。

到底是以能量为收敛判据,还是以力为收敛判据呢?关心能量的人,觉得以能量为判据就够了;关心力相关量的人,没有选择,只能用力作为收敛标准。

相关主题