当前位置:
文档之家› 基于柔性薄膜的电子器件的设计制备与发展
基于柔性薄膜的电子器件的设计制备与发展
研究进展:可延展柔性无机电子器件
可延展柔性电池
(NATURE COMMUNICATIONS 4:1543, 2013)
高达 200%-250% 的延展性
研究进展:可延展柔性无机电子器件
可延展柔性电池
(NATURE COMMUNICATIONS 4:1543, 2013)
研究进展:柔性电子器件的制备和集成方法
ACS Nano 2011
实现了波浪构型的柔性可延展铁电薄膜器件制备。 自2011年发表以来被引用10次。
32
研究进展:柔性结构破坏的大变形分析理论
理论和实验分了柔性结构界面破坏的三 种模式及其演化趋势 Adv. Func. Mater. 2008
从断裂力学角度提出了界面滑 移破坏的的表征方法 Appl. Phys. Lett., 2010
科学难点
可延展柔性结构
如何实现脆性无机薄膜器 件的可延展柔性?
如何设计无机薄膜与柔性 基体的集成结构?
pre 研究思路 利用力学屈曲变形使得互 连导线或薄膜出现波浪状
无机薄膜或互连导线
pre
聚合物柔性基体 无机薄膜或互连导线 聚合物柔性基体
13
基于分形的互连可展结构 及基体表面微结构布控
科学问题二:高速柔性薄膜器件的转印实现 及其界面物理机理
技术突破:薄膜器件稳定性和失效准则
21
三、国内的情况和研究条件
22
研究进展:可延展柔性无机电子器件
柔性无机μLED
(PNAS 105: 18675-18680, 2008)
通过力学机理设计的柔性无机mLED具比有机LED具有更高的亮 度、更长的寿命; 比传统无机LED具有更低的成本和高的延展性。
20
5.具有柔性互连导线的高速薄膜器件的延迟机制 与可靠性研究 研究内容:
高速可延展无机薄膜器件互连 导线延迟模型
高速可延展无机薄膜器件互连 导线可靠性评估 薄膜/基体系统的稳定性与可 靠性
大变形
裂纹
滑移
L-dL
界面强度在大变形情况下的演 化及失效过程
脱粘
科学贡献:高速可延展无机薄膜器件互连导线延迟机理
9
GDP
20000 0
4 0 2008 2009 2010 2011 2012
二、面临的技术挑战
10
高速柔性薄膜电子器件设计制备与集成的挑战
难点与挑战:
基于无机薄膜的电子器件可延 展柔性化? 如何将脆性无机薄膜与柔性基 体集成? 大变形及疲劳载荷下薄膜器件 是否失效?
器件或连线
柔性无机微纳电子器件原理 Flexible ICs
科学难点 如何实现脆性薄膜与柔性 基体的转印集成? 如何控制大变形下无机薄 膜/柔性基体间的界面失 效? 研究思路 调控无机薄膜/柔性基体 界面的粘附特性 大变形
异质界面
柔性器件
利用断裂力学确定界面失 效准则
14
科学问题三:柔性环境下无机薄膜器件的 高速电子学性能与退化机理
科学难点
如何保证可延展柔性环境 下无机薄膜的电学性能及 其可靠性? 研究思路 通过理论分析无机薄膜在 变形下的电学性能 通过实验与理论计算结合 方式确定多场耦合作用下 的无机薄膜的电学性能
electronics
front side tattoo after transfer
backside of tattoo
after integration onto skin
after deformation
仿表皮的的电子原件具有与皮肤相近的模量,在无需外加粘结剂的 情况下,在各种工况下(褶皱、弯曲)与人体皮肤保持很好的的接触。
(PNAS 105: 18675-18680, 2008)
电子路板的延展性高达 140% 可扭转、弯曲
研究进展:可延展柔性无机电子器件
大脑上超柔的电路
1 cm 75mm
(Nature Materials 9: 511-517, 2010)
25mm
unwrapped 2.8mm
2.8mm
unwrapped
碳纳米管:
高的电子迁移率, 比较稳定 高温生长, 电异质性
Nature (2008) Nature Nano. (2007)
6
高速柔性无机薄膜电子器件设计原理
基本 原理
刚性材料通过 结构化力学设 计实现柔性
PDMS Si
mother wafer: Si
pre dL L
PDMS
pre
电子学功能部件依然采用无机材料从而保证高速功能 通过力学及几何设计使得电子器件具备柔性可延展 大变形不改变器件电子学性能
18
3.满足柔性基体集成的高速薄膜器件的微纳制备技术研究 研究内容:
小型化、薄膜器件的外延结构 设计和生长技术 小型化、薄膜器件的器件结构 设计和制备技术 面向精确转印的衬底剥离和微 结构支撑技术
衬底剥离后的微支撑结构
科学贡献:薄膜材料的微型化设计和制备研究 技术突破:满足转印的衬底剥离技术和微支撑结构
中 比 3 重 ( 0 % )
电 子 信 息 制 造 业 收 入 ( 亿 元 )
2008 2009 2010 2011 2012
100000 80000 60000 40000
28 24
增 20 长 率 16 ( % 12 )
8
电子信息制造业一直保持增长,但增长率在降低,高速 柔性电子技术能够促进信息产业革新和升级。
17
2.高速柔性薄膜器件的高效、大规模转印集成技术研究 研究内容:
柔性基体表面微结构设计实 现界面粘附力调控的机理 薄膜与柔性基体转印结合过 程及控制参数
转印机理
大规模局部主动控制的转移 印刷集成方法
大规模转印
科学贡献:基于界面可控粘附的转印理论与集成方法 技术突破:实现高效高成品率的转印技术
可供生物集成电子器件的半导体材料
Science (2001) PNAS (2001)
?
a-Si poly-Si 10 100 Si GaAs 1,000 10,000 1
0.1
聚合物:
溶液处理工艺 性能较差小分来自材料:性能接近于a-Si 真空沉积
单晶材料:
需要研究固有的电荷传输; 易碎,集成工艺存在挑战
蓝光有机LED外部量子 效率为4.8%,使用寿命 小于15000小时; 蓝光无机LED外部量子 效率达到60%,使用寿 命达到50000小时以上
(Kim等2010年报道)
有机电子器件的电学性能与无机电子器件相比,相差数倍 5 不能利用有机半导体实现高频高速特性!
无机电子器件可伸展柔性的重要意义
15
主要研究内容
① 力学介入的可延展柔性高速薄膜器件集 成化设计研究 ② 高速柔性薄膜器件的高效、大规模转印 集成技术研究 ③ 满足柔性基体集成的高速薄膜器件的微 纳制备技术研究
④ 柔性/刚性异质界面对高速薄膜器件集成 及电子学性能的调控机理研究
⑤ 具有柔性互连导线的高速薄膜器件的延 迟机制与可靠性研究
器件或连线
柔性化
二氧化硅 硅 介电质 硅
柔性基体 “柔性”电子器件
11
传统 “非柔性”电子器件
关键科学问题
高速薄膜器件的可延展柔性化与集成化设计理论
高速柔性薄膜器件的转印实现及其界面物理机理
柔性环境下无机薄膜器件的高速电子学性能与 退化机理
12
科学问题一:高速薄膜器件的可延展柔性化 与集成化设计理论
CPDMS
多功能医用导管利用结构的高延展性(高达100%),实现了 将多种功能的芯片集成于导管头上,减小了微创手术的创伤。
研究进展:可延展柔性无机电子器件
仿表皮的柔性电子器件
(Science 333, 838-843, 2011)
bare skin
skin patch
deform relax
electronics 0.5cm tattoo
7.0mm
wrapped wrapped 0.3 cm 75mm wrapped
电路的柔性使得其在湿润的条件 下与大脑不规则表面实现非常好 的全面接触
研究进展:可延展柔性无机电子器件
可调电子眼
(Nature 454, 748-753, 2008) (PNAS 108(5), 1788-1793, 2011)
新生婴儿护理与健康监测
现在
未来采用柔性电子技术
4 14, 113 (2012). Ann. Rev. Biomed. Eng.
有机柔性电子器件的电学性能发展瓶颈
有机太阳能电池能量转 换效率8.3%; 无机太阳能电池能量转 换效率41.1%
(美国National Energy Renewable Laboratory)
研究进展:可延展柔性无机电子器件
柔性无机μLED
(Science 325: 977-981, 2009)
通过力学机理设计的柔性无机mLED具比有机LED具有更高的亮 度、更长的寿命; 比传统无机LED具有更低的成本和高的延展性。
研究进展:可延展柔性无机电子器件
可延展柔性电路板
(Science 320:507-511, 2008)
LED 1mm
1mm
electrode
tactile sensor Catheter Sensors 5mm 500mm deflate inflate rabbit heart 500mm electrode
electrode
5 mm
temp sensor
lesion electrode lesion
将电子元件转移印刷到曲面上,实现与人眼相似的功能,同 时通过内压的调控微调镜头曲面的曲率,实现镜头的缩放。