当前位置:文档之家› 电力电子5个实验

电力电子5个实验

锯齿波同步移相触发电路及单相半波可控整流电路实验一.实验目的1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。

3.调节脉冲移相范围将MCL—18的“G”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压Ub(即调RP),使 =180O。

调节MCL —18的给定电位器RP1,增加Uct ,观察脉冲的移动情况,要求Uct=0时,α=180O ,Uct=Umax 时,α=30O ,以满足移相范围α=30O ~180O 的要求。

4.调节Uct ,使α=60O ,观察并记录U 1~U 5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。

用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP3,使U G1K1和U G3K3间隔1800。

5.单相半波可控整流电路带电阻性负载断开触发电路“2”端与脉冲输出“K ”端的连接,“G ”、“K ”分别接至MCL —33(或MCL —53)的VT1晶闸管的控制极和阴极,注意不可接错。

负载R d 接可调电阻(可把MEL —03的900Ω电阻盘并联,即最大电阻为450Ω,电流达0.8A ),并调至阻值最大。

合上主电源,调节主控制屏输出电压至U uv =220V ,调节脉冲移相电位器RP ,分别用示波器观察α=30°、60°、90°、120°时负载电压U d ,晶闸管VT1的阳极、阴极电压波形U Vt 。

并测定U d 及电源电压U 2,验证2cos 1245.0α+=U U d6.单相半波可控整流电路带电阻—电感性负载,无续流二极管串入平波电抗器,在不同阻抗角(改变Rd 数值)情况下,观察并记录α=30O 、60O 、90O 、120O 时的U d 、i d 及Uvt 的波形。

注意调节R d 时,需要监视负载电流,防止电流超过R d 允许的最大电流及晶闸管允许的额定电流。

7.单相半波可控整流电路带电阻,电感性负载,有续流二极管。

接入续流二极管,重复“3”的实验步骤。

三相可控整流电路实验一.实验目的了解三相半波可控整流电路的工作原理,熟悉三相桥式全控整流电路的接线及工作原理。

研究可控整流电路在电阻负载和电阻—电感性负载时的工作。

二.实验线路及原理三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。

不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。

三相桥式整流电路的工作原理可参见“电力电子技术”的有关教材。

实验线路见图。

三.实验内容1.研究三相半波可控整流电路供电给电阻性负载时的工作。

2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作。

3.研究三相桥式全控整流电路供电给电阻性负载时的工作。

4.研究三相桥式全控整流电路供电给电阻—电感性负载时的工作。

四.实验设备及仪表1.MCL系列教学实验台主控制屏。

2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。

3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)4.MEL—03组件(900Ω,0.41A)或自配滑线变阻器.5.双踪示波器。

6.万用电表。

五.注意事项1.整流电路与三相电源连接时,一定要注意相序。

2.整流电路的负载电阻不宜过小,应使I d不超过0.8A,同时负载电阻不宜过大,保证I d超过0.1A,避免晶闸管时断时续。

3.正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。

六.实验方法1.按图接线,未上主电源之前,检查晶闸管的脉冲是否正常。

(1)打开MCL—18电源开关,给定电压有电压显示。

(2)用示波器观察MCL-33(或MCL-53,以下同)的双脉冲观察孔,应有间隔均匀,幅度相同的双脉冲(3)检查相序,用示波器观察“1”,“2”单脉冲观察孔,“1”脉冲超前“2”脉冲600,则相序正确,否则,应调整输入电源。

(4)用示波器观察每只晶闸管的控制极,阴极,应有幅度为1V—2V的脉冲。

2.研究三相半波可控整流电路供电给电阻性负载时的工作合上主电源,接上电阻性负载,调节主控制屏输出电压U uv、U vw、U wv,从0V调至110V:(a)改变控制电压U ct,观察在不同触发移相角α时,可控整流电路的输出电压U d=f (t)与输出电流波形i d=f(t),并记录相应的U d、I d、U ct值。

(b)记录α=90°时的U d=f(t)及i d =f(t)的波形图。

(c)求取三相半波可控整流电路的输入—输出特性U d/U2=f(α)。

(d)求取三相半波可控整流电路的负载特性U d=f(I d)注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。

以下均同3.研究三相半波可控整流电路供电给电阻—电感性负载时的工作接入MCL—33的电抗器L=700mH,,可把原负载电阻Rd调小,监视电流,不宜超过0.8A(若超过0.8A,可用导线把负载电阻短路),操作方法同上。

(a)观察不同移相角α时的输出U d=f(t)、i d=f(t),并记录相应的U d、I d值,记录α=90°时的U d=f(t)、i d=f(t),U vt=f(t)波形图。

(b)求取整流电路的输入—输出特性U d/U2=f(α)。

单相桥式全控整流及其有源逆变电路实验一.实验目的1.了解单相桥式全控整流电路的工作原理。

2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载时的工作。

3.熟悉MCL—05锯齿波触发电路的工作。

4.加深理解单相桥式有源逆变的工作原理,掌握有源逆变条件。

5.了解产生逆变颠覆现象的原因。

二.实验线路及原理参见图三.实验内容1.单相桥式全控整流电路供电给电阻负载。

2.单相桥式全控整流电路供电给电阻—电感性负载。

3.单相桥式有源逆变电路的波形观察。

4.有源逆变到整流过渡过程的观察。

5.逆变颠覆现象的观察。

四.实验设备及仪器1.MCL系列教学实验台主控制屏。

2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。

3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)4.MCL—05组件或MCL—05A组件5.MEL—03三相可调电阻器或自配滑线变阻器。

6.MEL—02三相芯式变压器。

7.双踪示波器8.万用表五.注意事项1.本实验中触发可控硅的脉冲来自MCL-05挂箱,故MCL-33(或MCL-53,以下同)的内部脉冲需断X1插座相连的扁平带需拆除,以免造成误触发。

2.电阻RP的调节需注意。

若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。

3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。

4.MCL-05面板的锯齿波触发脉冲需导线连到MCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。

同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。

5.逆变变压器采用MEL-02三相芯式变压器,原边为220V,中压绕组为110V,低压绕组不用。

6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。

7.带反电势负载时,需要注意直流电动机必须先加励磁。

六.实验方法1.将MCL—05(或MCL—05A,以下均同)面板左上角的同步电压输入接MCL—18的U、V输出端(如您选购的产品为MCL—Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U、V输出端相连),“触发电路选择”拨向“锯齿波”。

2.断开MEL-02和MCL-33的连接线,合上主电路电源,调节主控制屏输出电压U uv至220V,此时锯齿波触发电路应处于工作状态。

MCL-18的给定电位器RP1逆时针调到底,使U ct=0。

调节偏移电压电位器RP2,使α=90°。

断开主电源,连接MEL-02和MCL-33。

注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。

以下均同3.单相桥式全控整流电路供电给电阻负载。

接上电阻负载(可采用两只900Ω电阻并联),并调节电阻负载至最大,短接平波电抗器。

合上主电路电源,调节U ct,求取在不同α角(30°、60°、90°)时整流电路的输出电压U d=f(t),晶闸管的端电压U VT=f(t)的波形,并记录相应α时的U ct、U d和交流输入电压U2值。

若输出电压的波形不对称,可分别调整锯齿波触发电路中RP1,RP3电位器。

4.单相桥式全控整流电路供电给电阻—电感性负载。

断开平波电抗器短接线,求取在不同控制电压U ct时的输出电压U d=f(t),负载电流i d=f(t)以及晶闸管端电压U VT=f(t)波形并记录相应U ct时的U d、U2值。

注意,负载电流不能过小,否则造成可控硅时断时续,可调节负载电阻RP,但负载电流不能超过0.8A,U ct从零起调。

改变电感值(L=100mH),观察α=90°,U d=f(t)、i d=f(t)的波形,并加以分析。

注意,增加U ct使α前移时,若电流太大,可增加与L相串联的电阻加以限流。

5.有源逆变实验(a)将限流电阻RP调整至最大(约450Ω),先断开MEL-02和MCL-33的连接线,合上主电源,调节U uv=220V,用示波器观察锯齿波的“1”孔和“6”孔,调节偏移电位器RP2,使U ct=0时,β=10°,然后调节U ct,使β在30°附近。

(b)连接MEL-02和MCL-33,三相调压器逆时针调到底,合上主电源,调节主控制屏输出使U uv=220V。

用示波器观察逆变电路输出电压U d=f(t),晶闸管的端电压U VT=f (t)波形,并记录U d和交流输入电压U2的数值。

注:如您选购的产品为MCL—Ⅲ、Ⅴ,无三相调压器,直接合上主电源。

以下均同(c)采用同样方法,绘出β在分别等于60°、90°时,U d、U VT波形。

6.逆变到整流过程的观察当β大于90°时,晶闸管有源逆变过渡到整流状态,此时输出电压极性改变,可用示波器观察此变化过程。

注意,当晶闸管工作在整流时,有可能产生比较大的电流,需要注意监视。

7.逆变颠覆的观察斩波电路实验一.实验目的熟悉六种斩波电路(buck chopper 、boost chopper 、buck-boost chopper、cuk chopper、sepic chopper、zeta chopper)的工作原理,掌握这六种斩波电路的工作状态及波形情况。

相关主题