余热余压发电技术(钢铁)
目前,余热锅炉采用自然循环、双压系统;余热为多段取风,循 环风利用形式整体余热利用效率较高。 据经验数据,每10m2的烧结面积可产生1.5t/h的蒸汽,可发电 300kW,折合标煤120kg/h。
烧结余热发电系统简介
烧结机烟气余热利用
烧结过程是个热加工过程,烧结料层中温度变化随主排风机 自上而下抽入空气、烧结台车不断前移而变化。其中温度最高烧 结过程结束一般控制在接近烧结机尾的风箱位置。一般烧结机尾 部倒数第二个风箱温度最高。 一般烧结烟气焓硫较高,为了确保非回收区的烟气流经机头 电除尘器至烧结机主抽风机时,不至于结露,对回收的烟气和非 回收的烟气都要严格测算,才能确保烧结机烟气余热回收利用合 理。
什么是转炉炼钢?
转炉炼钢 converter steelmaking这种炼钢法使用的氧化剂是氧气。把氧气鼓 入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量 (含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。 因此转炉炼钢不需要另外使用燃料。炉料主要为铁水和造渣料(如石灰、石 英、萤石等),为调整温度,可加入废钢以及少量的冷生铁块和矿石等。
氧气顶吹转炉总图
转炉生产工艺概况
煤气净化回收与利用技术按净化方式分为湿法和干法2大类 干法系统包括烟气冷却净化系统与煤气回收系统。由活动烟罩捕集并经汽化冷 却烟道冷却至1600℃左右的转炉烟气,首先进入蒸发冷却器降温和初除尘,温 度降至180℃~200℃左右,进入静电除尘器进行精除尘。然后根据CO含量、 O2含量由阀门切换站进行煤气回收或放散操作。回收期煤气需经冷却器二次冷 却,温度降至70℃后进入煤气柜回收;放散期煤气需点火燃烧,排放气体的含
烧结余热发电技术发展
从利用目的上分,烧结余热的回收利用方式,可分为热风点火、 预热、保温等直接利用方式,和生产蒸汽、发电、制冷等间接利用方 式。其中,以发电和生产蒸汽最为普遍,两者的利用原理和技术路线 相通。 烧结余热发电技术的发展,大体上可划分为三个阶段。
第一阶段,上世纪70年代末及80年代,为烧结余热发电技术 在日本的诞生及发展期,各种系统相继出现,烧结余热利用技术 在日本得到迅速推广。 日本钢管扇岛厂(1978年12月) 和歌山4#(1979年3月) 和歌山5#(1981年9月) 小仓3#(1981年10月) 鹿岛2#(1981年12月) 新日铁大分2#(1982年12月)
余热余压发电技术
(钢铁)
二o一一年三月—北京
钢铁工艺流程简介 烧结生产工艺及余热发电技术
转炉生产工艺及余热发电技术
高炉生产工艺及高炉煤气发电技术
高炉煤气压差发电技术
第一部分
钢铁工艺流程简介
钢铁基本工艺流程简介 钢铁行业是一个高耗能、高污染的产业,也是节能减排潜力最大的 行业之一。中国钢铁产能分散,企业处于多层次、不同结构、不同技 术装备水平共同发展阶段,因此,节能减排任务艰巨。 随着我国钢铁工业持续快速发展,能否进一步节能降耗、保护环 境、实现清洁生产,不仅关系到企业的经济效益,而且直接关系到企 业的形象和生存,影响到企业可持续发展,因此,节能和环保已成为 钢铁企业降低成本、提高企业竞争力、走可持续发展的必由之路。
烧结余热发电系统简介
主烟道
余热锅炉
余热
余热锅炉
汽轮机
发电机
~
热力系统
循环冷却水系统
凝汽器 冷却塔
烧结机烟风系统
环冷机烟风系统
电气系统 热工控制系统 化学水处理系统
烧结余热发电技术
1)锅炉蒸汽系统:强制循环和自然循环 2)取风方式:单段取风和多段取风
3)热力系统:单压系统和双压系统
4)冷却机取热方式:开路系统、半循环和闭路循环
尘浓度≤15mg/Nm3。
转炉煤气干法回收工艺[LT法(Lurgi-Thyssen)]
转炉煤气湿法回收工艺[OG法(Oxygen Converter Gas Recovery System)]
OG(湿法)工艺:冶炼中产生的近1450℃煤气,通过冷却烟道冷却到约900℃后进入溢流文 氏管,使煤气中80%左右的固体颗粒脱离后进人重力脱水器脱水,煤气温度降至约70℃。在风 机的抽引下煤气流速突增并继续进入R—D文氏管,经水雾处理去除8μm以上的固体颗粒后再 水雾分离得到纯净的煤气。系统设置有气体分析仪,当煤气合格(CO > 35%、O2<2%)时三 通阀切换至回收状态,煤气借助风机后的正压,经水封逆止阀、V型水封送入气柜。如煤气不 合格则三通阀切换至放散状态,经放散塔点火燃烧后排放到大气中。
烧结生产中烟气余热的特点
烧结生产能耗一般占吨钢能耗的10~20%,冷却机废气显热和 烧结烟气显热占烧结过程热耗的30 ~ 50%,具有很高的回收价值。
烧结机尾部余热利用部分
环冷机余热发电利用部分
烧结矿产量及温度 余热利用的影响因素 冷却介质流量 烧结机及冷却机机速 有无热筛
冷却介质初温 料层厚度 环冷机漏风 烟温限制
具有间歇性、波动性和周期性的特点。
转炉余热发电技术
转炉烟气流量及温度变化曲线图
转炉余热发电技术
关键技术:蒸汽参数选择、蒸汽蓄热器选型、蓄热器控制
转炉余热发电技术
• 4×45t转炉
序号 1 转炉 项目 生产能力 冶炼周期 汽化冷却烟道运行压力 数量 总蒸汽流量 容积 数量 出口压力范围 装机容量 平均发电量 单位 t/炉 min/炉 MPa 座 t/h m3 台 MPa MW MW 数据 45 25 1.5 4 28~32 60 4 1.0~1.1 5 4.2
强度高,还原性好,含有一定的CaO、MgO,具有足够的碱度,而且已事
先造渣,高炉可不加或少加石灰石。 通过烧结可除去矿石中的S、Zn、Pb、As、K、Na等有害杂质,减少
其对高炉的危害。高炉使用冶炼性能优越的烧结矿后,基本上解除了天
然矿冶炼中常出现的结瘤故障;同时极大地改善了高炉冶炼效果。 烧结中可广泛利用各种含铁粉尘和废料,扩大了矿石资源,又改善
序号 1 2 余热回收流程 开路回收利用流程 闭路循环回收利用流程
烧结机烟气余热利用
主烟道
M
300 ~400 ℃
过热蒸汽
M
M
M
旁 路 烟 囱
≈ 200℃
水泵来水
引风机
冷却机废气余热利用
烧结矿从烧结机尾经过热破碎后卸到 冷却机上,卸出的烧结饼温度平均在 500∽800℃之间。热烧结矿经过冷却机冷 却,使得从冷却机排出的烧结矿温度在 150 ℃以下。热烧结矿在冷却过程中其热 能变为废气显热,废气温度随冷却机部位 的不同而不同,给矿部温度最高,在450 ℃以上,排矿部温度最低。
转炉的分类
耐火材料性质:分为碱性(用镁砂或白云石为内衬)和酸性(用硅质材料为内
衬);酸性转炉不能去除生铁中的硫和磷,须用优质生铁,因而应用范围受到限制。 碱性转炉适于用高磷生铁炼钢,曾在西欧得到较大发展。 气体吹入炉内的部位:分为底吹、顶吹和侧吹; 按吹炼采用的气体,分为空气转炉和氧气转炉。空气吹炼的转炉钢,因含氮量高, 质量不如平炉钢,且原料有局限性,又不能多配废钢,未能像平炉那样在世界范围 内广泛采用。1952年氧气顶吹转炉问世,逐渐取代空气吹炼的转炉和平炉,现在 已经成为世界上主要炼钢方法。
主要基本工艺: 炼铁 炼钢 浇注 钢材成型
钢铁基本工艺流程简介
目前钢铁余热回收利用
第二部分 烧结生产工艺及余热发电技术
烧结生产工艺简介
钢铁工业是能源消耗最大的产业部门之一,烧结生产一般占吨钢能耗的
10∽20%,仅次于炼铁。烧结节能在钢铁企业节能中占有十分重要的地位。 高炉炼铁生产前,将各种粉状含铁原料,配入适量的燃料和熔剂,加入适
烧结机工艺流程
烧结机工艺流程
烧结生产工艺简介
1、烧结原、燃料及烧结矿 3、烧结 5、烧结矿冷却
2、配料 4、烧结饼破碎和筛分 6、烧结矿整粒和成品矿贮存
烧结生产工艺简介
按冷却风流的通过方式,可分为抽风和鼓风两种形式。 按冷却机的结构形式,又可分为带式、环式、格式、塔 式和盘式。鼓风环冷是目前应用较普遍的一种方式。
量的水,经混合和造球后在烧结设备上使物料发生一系列物理化学变化,烧结
成块的过程。主要包括烧结料的准备,配料与混合,烧结和产品处理等工序。 富矿粉和贫矿富选后得到的精矿粉都不能直接入炉冶炼,必须将其重新造 块,烧结是最重要最基本的造块方法之一。
烧结生产工艺简介 通过烧结得到的烧结矿具有许多优于天然富矿的冶炼性能,如高温
冷却机废气余热利用方案
序号 废气余热利用
高温段 用于余热锅炉产蒸汽 中温段 用作点火保温炉的助燃 风 低温段 用作混合料预热
余热可以分为高、中、低三个温区分
别利用。
400℃ 1#
M M M
2#
M
300℃
烟风系统
主蒸汽Leabharlann 环冷机1段环冷机2段
余 热 锅 炉
M
M
旁 路 烟 囱
M
M
M
新风 循环 风机
烧结机烟气和冷却机废气余热回收利用技术
烧结机烟气和冷却机废气余热利用系统图
2×360m2环冷机余热发电,装机30MW,年发电量可达2.08亿kWh,年 节约标媒4.4万吨,年减排CO2约8万吨,同时减少粉尘排放10万吨/年。 单位投资费用6000--8000元/kw左右,投资回收期为3~4年。
第三部分
转炉生产工艺及余热发电技术
钢与铁的区别
转炉余热发电技术
• 冶金企业在生产过程中产生大量低参数饱和蒸汽,由于工艺过程及生产技 术等因素,这部分中低温饱和蒸汽没有得到有效利用,被白白地排放到了 环境中。 • 随着低参数饱和蒸汽汽轮机技术的进步,给这些余热资源的利用提供了一 个很好的途径。 转炉蒸汽特性: 转炉炼钢的工艺决定了转炉高温烟气具有间歇性、波动性和周期性。 受转炉烟气的影响,转炉汽化冷却烟道产生的低参数饱和蒸汽同样也