第一章绪论在一些电影、电视剧中我们常可以看到,有些博物馆等安全性要求比较高的场所,在安防电脑系统的屏幕上面,显示着一根根红线,如果有人进入不小心“触”到了这根红线,那么报警器就会发响。
这就是红外线报警器。
1.1 课题研究的意义红外线报警器分主动式和被动式两种[1]。
主动式红外线报警器,是报警器主动发出红外线,红外线碰到障碍物,就会反弹回来,被报警器的探头接收。
如果探头监测到,红外线是静止不动的,也就是不断发出红线线又不断反弹的,那么报警器就不会报警。
当有会动的物体触犯了这根看不见的红线的时候,探头就会检测到有异常,就会报警。
被动式报警器少了一项功能,就是发射红外线。
物理学上告诉我们,当物体的温度高于0K的时候,就会发出红外线,换句话说任何物体都能发出红外线[2]。
而其后的原理,被动式报警器和主动式是一样的。
红外线报警器对温度敏感,温度越高的物体辐射出的红外线越强,当感应到环境中存在高出背景强度的辐射时,就触发报警。
主动式红外探测器是由收、发装置两部分组成[3]。
发射装置向装在几米甚至于几百米远的接收装置辐射一束红外线,当被遮断时,接收装置即发出报警信号,因此,它也是阻挡式报警器,或称对射式探测器。
通常,发射装置由多谐振荡器、波形变换电路、红外发光管及光学透镜等组成。
振荡器产生脉冲信号,经波形变换及放大后控制红外发光管产生红外脉冲光线,通过聚焦透镜将红外光变为较细的红外光束,射向接收端。
接收装置由光学透镜、红外光电管、放大整形电路、功率驱动器及执行机构等组成[4]。
光电管将接收到的红外光信号转变为电信号,经整形放大后推动执行机构启动报警设备。
主动式红外报警器有较远的传输距离,因红外线属于非可见光源,入侵者难以发觉与躲避,防御界线非常明确。
主动式红外报警器是点型、线型探测装置,除了用作单机的点警戒和线警戒外,为了在更大范围有效地防范,也可以利用多机采取光墙或光网安装方式组成警戒封锁区或警戒封锁网,乃至组成立体警戒区。
单光路由一个发射器和一个接收器组成。
双光路由两对发射器和接收器组成[5]。
两对收、发装置分别相对,是为了消除交叉误射;多光路构成警戒面;反射单光路构成警戒区。
1.2 两种红外线探测器工作原理的比较1. 被动式红外探测器的工作原理:世界上任何物体都存在红外线,只不过红外线的频段是用人眼看不到的,被动式红外探测器就是通过采用对人体体温辐射的红外线频段敏感的元件为核心,在感应到立体空间内的热源时产生报警,被动式红外探测器在技术层面上相对而言存在以下弱点:1).容易受到动物体温辐射、阳光照射、热气流温度辐射等多种因素干扰而引发误报警;2).当气温与人体温度接近或高于人体温度时,这一类探测器将根本无法正常工作。
因以上技术层面上的原因,所以被动式红外探测器相对于主动式红外对射探测网较容易产生误报与漏报。
不过随着现在生产工艺和技术的进步,只要您能根据自己的实际环境选择使用适合的红外线防盗报警器这种情况会大大降低。
2.主动式红外探测器的工作原理:以数字通讯方式通过CPU的程序控制,使主动红外线对射探测器具有智能性,可精确区分每条射束,以便采用多束红外线射束构成多线束的密集防卫;同时还可通过调整CPU的程序,设定在规定的若干束红外线射束被阻断时产生报警输出。
由于其工作特点,可以构成对窗、阳台等建筑物的出入口形成封闭式的防范,为现代化建筑防盗方案提供“御贼于户外” 、住户自由活动于户内的高度人性化的安全防护。
所以,本课题打算设计一个主动式红外报警器。
1.3 课题研究的目的近年来,随着改革开放的深入发展,电子电器的飞速发展,人民的生活水平有了很大提高。
各种高档家电产品和贵重物品为许多家庭所拥有。
然而一些不法分子也是越来越多。
这点就是看到了大部分人防盗意识还不够强.造成偷盗现象屡见不鲜。
因此,越来越多的居民家庭对财产安全问题十分担忧。
现在很多小区都安装了智能报警系统,因而大大提高了小区的安全程度,有效保证了居民的人身财产安全。
由于红外线是不见光,有很强的隐蔽性和保密性,因此在防盗、警戒等安保装置中得到了广泛的应用。
红外报警器大多数采用国外的先进技术,其功能也非常先进。
其中包括被动式热释电型红外报警器。
还有红外监控无线报警器,超声波防盗报警器,红外线防盗报警器,高灵敏红外报警器,触摸式延时防盗报警器, 触摸式防盗报警器,红外报警器, 红外线声先报警器 (6)防盗报警系统是在探测到防范现场有入侵者时能及时发出报警信号的专用电子系统,一般由探测器(报警器)、传输系统和报警控制器组成。
探测器检测到意外情况就产生报警信号,通过传输系统送入报警控制器发出声、光或其他报警信号[7]。
探测器(报警器)的种类很多,按所探测的物理量的不同,可分为微波、红外、激光、超声波和振动等方式;按电信号传输方式不同,又可分为无线传输和有线传输两种方式[8]。
由于红外线是不见光,有很强的隐蔽性和保密性,因此在防盗、警戒等安保装置中得到了广泛的应用,这时红外线报警器的简易、灵敏度高为人们解决了不少问题。
但是市场上的报警器大部分都是用于一些大公司财政机构,价格高昂,一般人们难以接受,如果再设计和生产一种价廉、性能灵敏可靠的防盗报警器,必将为大多数需求者所利用,在人们的防盗和保证财产安全方面发挥更加有效的作用。
本课题尝试用价格低廉、应用普遍的AT89S52单片机控制的电路来设计一个主动式对射式的红外线防盗报警器,期望达到方便、实用的效果。
第二章总体设计的方案该系统以单片机AT89S52系列为核心,采用红外线发射管和红外线接收管为发射和接收装置,由反相器芯片反相间接控制CPU工作。
在CPU程序运行以后控制输出口电平使得蜂鸣器与发光二极管组成的声光报警电路同时进行声光报警。
系统原理框图如图2-1所示。
图2-1 系统方框图采用AT89S52单片机,直流可调开关MC34063,反相器74LS14D等芯片[9]。
其中,AT89S52的P1.2~P1.7为输出口,而P3.0~3.5为输入口。
P1口连接红外线发射电路,P1口为低电平时,红外线发射电路导通,正常发射红外线[10]。
P3口输入经接收红外线电路接收并由反相器反相的电平,当电平到达单片机CPU后,若各口均为低电平,则CPU不做任何反应,此时不报警;而当红外线被认为挡住而使接收电路无法接受到时P3输入口就会输入高电平,此时当在一定的时间内检测到位于不同位置的光束被遮挡时,由P3.7口输出报警信号,驱动声光报警电路进行报警。
第三章硬件电路各部分电路设计AT89S52单片机式一种低功耗,高性能的CMOS8位微控制器,具有8K在系统可编程Flash存储器。
使用Atmel公司高密度非易失性存储器技术制造,与工业80S51产品指令和引脚完全兼容。
片上的Flash允许程序存储器在系统可编程,亦适于常规编程器[11]。
在单芯片上拥有灵巧的8位CPU和在系统可编程Flash,使得AT89S52为众多嵌入式控制应用系统提供高灵活、有效的解决方案。
3.1 单片机控制系统电路单片机P1口与红外线发射电路相连,P3口与红外线接收电路相连,P3.7口连接声光报警电路输出方波脉冲信号驱动声光报警。
X1、X2脚与晶振相连,用于定时计数,以形成一秒周期的方波脉冲信号[12]。
3.1.1 主控芯片的性能以及标准功能主要性能:●与MCS-51单片机产品兼容●8K 字节在系统可编程Flash存储器●1000次擦写周期●全静态操作:0Hz~33Hz●三级加密程序存储器●32 个可编程I/O口线●三个16 位定时器/计数器●八个中断源●全双工UART 串行通道●低功耗空闲和掉电模标准功能:AT89S52具有以下标准功能:8K字节Flash,256字节RAM,32位I/O口线,看门狗定时器,2个数据指针,三个16位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路。
另外,AT89S52可降至0HZ静态逻辑操作,支持两种软件可选择节电模式。
空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止[15]。
3.1.2 主控芯片的主要结构及引脚功能主体单片机芯片AT89S52的引脚结构如图3-1所示:图3-1 系统方框图各主要管脚介绍如下:VCC : 电源GND: 地P0口:P0 口是一个8位漏极开路的双向I/O口。
作为输出口,每位能驱动8个TTL逻辑电平。
对P0端口写“1”时,引脚用作高阻抗输入。
当访问外部程序和数据存储器时,P0口也被作为低8 位地址/数据复用。
在这种模式下,P0具有内部上拉电阻。
在flash编程时,P0口也用来接收指令字节;在程序校验时,输出指令字节。
程序校验时,需要外部上拉电阻。
P1口:P1口是一个具有内部上拉电阻的8位双向I/O口,P1输出缓冲器能驱动4个TTL逻辑电平。
对P1 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
此外,P1.0和P1.2分别作定时器/计数器 2 的外部计数输入(P1.0/T2)和时器/计数器 2 的触发输入(P1.1/T2EX)。
P2 口:P2 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器能驱动4 个TTL 逻辑电平。
对P2 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
在访问外部程序存储器或用16 位地址读取外部数据存储器(例如执行MOVX @DPTR)时,P2 口送出高八位地址。
在这种应用中,P2 口使用很强的内部上拉发送1。
在使用8 位地址(如MOVX @RI)访问外部数据存储器时,P2 口输出P2 锁存器的内容。
在flash 编程和校验时,P2 口也接收高8 位地址字节和一些控制信号。
P3 口:P3 口是一个具有内部上拉电阻的8 位双向I/O 口,P2 输出缓冲器能驱动 4 个TTL 逻辑电平。
对P3 端口写“1”时,内部上拉电阻把端口拉高,此时可以作为输入口使用。
作为输入使用时,被外部拉低的引脚由于内部电阻的原因,将输出电流(IIL)。
P3 口亦作为AT89S52 特殊功能(第二功能)使用,在flash 编程和校验时,P3 口也接收一些控制信号[13]。
如下表3-1所示。
表3-1 P3口的引脚号及其第二功能引脚号第二功能P3.0 RXD(串行输入)P3.1 TXD(串行输出)P3.2 INT0(外部中断 0)P3.3 INT0(外部中断 0)P3.4 T0(定时器0外部输入)P3.5 T1(定时器1外部输入)P3.6 WR(外部数据存储器写选通)P3.7 RD(外部数据存储器写选通)RST: 复位输入。