管道对接焊缝的超声波检测摘要:针对工艺管道对接焊缝的特点,对焊接方法、焊接位置及易产生的缺陷进行了分析由于工艺管道对接焊缝壁厚范围大,多是直管与直管、直管与弯头、法兰、阀门等管件对接,采用单面焊接双面成型工艺,这种特殊结构型式和焊接工艺,使超声波检测只能进行单面双侧扫查或单面单侧扫查"为了提高缺陷的检出率,对不同规格!不同结构的焊缝在选择扫查面、探头数量、探头型号和探头尺寸时应有针对性"根部缺陷的判定对仪器扫描线调节精度提出了较高要求,对典型缺陷的回波特征进行了分析"通过以上分析和采取的措施,能有效提高工艺管道对接焊缝超声波检测的质量。
石化装置工艺管道对接焊缝超声波检测具有一定的难度"早期的模拟超声波探伤仪由于定位精度不高,对于根部缺陷的识别和判定存在较大难度,每次更换不同角度的探头后时间基线都要重新调节,非常不便,这为在工艺管道对接焊缝领域推广超声波检测技术造成了很大的困难"近些年,超声波检测灵敏测设备发生了巨大改变,且更新很快,数字式探伤仪代替了模拟仪"数字式探伤仪较原先使用的模拟式超声波探伤仪具有显著的优点"首先,其定位精度高,定位精度可达0.1mm,为管道焊缝根部信号的判定提供了可靠依据;第二,可存储多种探头参数及其距离一波幅曲线,为现场采用多种角度的探头进行检测提供了方便,提高了不同角度缺陷的检度,也可方便地变换探头(角度),为辨识真、伪信号提供了方便;第三,可以存储动态波形和缺陷包络线,并可作为电子文件存档备查"数字式超声波探的难题"。
笔者推荐管道焊缝探伤采用数字式超声波探伤仪。
通过专业培训和严格考核,可以筛选出合格的管道对接焊缝超声波检测人员,完全能保证管道焊缝的超声波检测质量。
通过对超声波检测方法、扫查面、探头数量、探头型号和探头尺寸的控制、以及理论分析和实际验证, 表明超声波检测能有效保证管道焊缝的检测质量。
超声波检测操作灵活方便,对厚壁管道检测灵敏度和检测效率均高于射线检测,成本低于射线检测,且对人体无害,是一种科学!环保的检测方法。
1 管道对接焊缝与容器对接焊缝的不同点管道对接焊缝较容器对接焊缝从焊接工艺、结构型式!主要缺陷产生的部位、缺陷信号判别、探头扫查面、探头折射角度的选择以及祸合面曲率等都有较大区别"因此从事管道对接焊缝超声波检测的人员必须对比有一定的了解"表1是管道对接焊缝与容器对接焊缝超声波检测不同点的比较。
2 焊接工艺及缺陷分析管道对接焊缝的超声波检测有两个重要环节,一是如何能保证不漏检缺陷,二是如何能正确识别和判定缺陷"以下对管道的接头型式、焊接方法、焊接位置及易产生的缺陷进行了分析,为设计检测工提高缺陷的检出率和信号判定提供参考。
2.1 结构型式与扫查面石化装置工艺管道对接焊缝一般可分为3种型式:直管与直管对接、直管与管件对接、管件与管件对接。
(1) 直管与直管对接焊缝探头可以在焊缝两侧进行扫查。
(2) 直管与管件对接焊缝由于管件侧表面为不规则曲面(如弯头、法兰、阀门或三通等),探头不能良好藕合,因此,只能从直管一侧进行扫查,为了提高缺陷检出率,应选择2种不同角度的探头进行扫查。
(3) 管件与管件对接焊缝由于焊缝两侧均为不规则曲面(如弯头!法兰、阀门或三通等),探头不能良好祸合,因此,这类焊缝不能进行正常的超声波检测"如客户有措施将焊缝余高磨平(与母材平齐), 则可将探头通过磨平的焊缝进行检测"将焊缝打磨至与母材平齐是一件很困难的事,一般不这样做。
2.2 焊接位置了解焊接位置有助于缺陷性质的分析判断。
管道对接焊缝的焊接位置分为水平转动、水平固定、垂直固定和45度斜固定。
(l) 水平转动口焊接时,焊接位置总是处于时钟11点或1点附近的位置,焊接操作最易控制,最不易产生焊接缺陷(图1)"(2)水平固定口焊接时,上半部分处于平焊位置,下半部分处于仰焊位置,两侧处于立焊位置(图2) 。
(3) 垂直固定口焊接时,其位置为横焊,焊接位置示意见图3。
(4)45度斜固定口焊接时,各部分在水平固定的基础上又增加了倾斜角度,加大了焊接难度(图4)。
2.3 各焊接位置易产生的缺陷类型(1) 焊接程序目前石化装置管道对接焊缝均采用氢弧焊打底,焊工在打底结束前留一小段用作检查孔,用手电筒观察根部打底情况,若有不良现象则立即将不良部位用磨光机去除重焊,最终检查良好后将根部最后一小段焊好"氢弧焊打底结束后,对于较厚的焊缝一般采用手工电弧焊或埋弧自动焊填充盖面。
(2) 平焊位置铁水熔化后在重力的作用下会向下淌,因此平焊位置焊接时要控制电流不能过大, 焊接电流和焊接速度要适当,否则易形成焊瘤和烧穿。
焊条接头和焊瘤部位易产生气孔。
(3) 立焊位置在立焊位置因铁水下淌导致焊缝波纹粗糙及内外表面焊缝成型不良,也容易产生未焊透、未熔合!焊瘤及咬边"因此要控制焊接电流不能过大,焊接速度不能过快。
(4) 仰焊位置仰焊位置易产生内凹、未焊透、未熔合及焊瘤(余高过高),仰焊位置电流过大易产生内凹!烧穿和焊瘤,电流过小易产生未焊透和未熔合,因此仰焊部位的焊接难度最大"焊工常采用灭弧焊法进行焊接,即引弧!将焊条熔化一点立即断弧、待片刻熔池凝固、再继续引弧熔化一点焊条立即断弧...这样循环持续,直至铁水成型达到可控为止,在烧第二层焊缝时电流也不能过大,否则将第一层铁水熔化下坠形成内凹,电流越大形成的内凹越深。
(5)横焊位置管子垂直固定,焊工围绕焊缝进行横向焊接。
横焊位置焊接时,铁水受重力作用,上部易出现咬边,坡口易产生未熔合,焊接每层之间如果清理不好易产生夹渣。
焊缝表面横排波纹控制不好会比较粗糙。
3 探头的选择探头选择时要考虑的因素有:(1) 检测厚度检测较薄焊缝应选择大K 值、短前沿探头,一次波尽可能扫查更多的焊缝截面;对于大厚度焊缝应选择晶片尺寸较大、K 值合适、具有足够灵敏度的探头。
根据实际工作经验,笔者推荐壁厚不小于7mm 的焊缝宜采用单斜探头进行检测。
壁厚< 7mm 的焊缝检测时杂波干扰严重,目前多选用聚焦探头或双晶探头。
但聚焦探头和双晶探头一般宽度较大,与小径管藕合时要进行修磨"由于聚焦探头和双晶探头都是在焦点附近灵敏度最高,探测范围受到一定影响,工艺管道壁厚< 7mm 的管道管径一般均较小,因此,对壁厚< 7mm 的管道焊缝不推荐采用超声波检测法进行检测。
(2) 检测面曲率半径R 较小的管道,要选择接触面小的探头,以保证良好藕合;直径较大的管道可以选择尺寸较大的探头,以提高检测效率。
探头与工件接触面尺寸W 应满足下式:R≥W2 /4 (1)目前市场销售的晶片尺寸为6mm x 6mm 的短前沿小晶片探头,其探头宽度一般为12mm 。
由式(l)计算可得管道直径应> 72mm。
为提高藕合效果,笔者推荐采用探头宽度为12mm 的小晶片短前沿探头进行检测时,管道直径下限为100mm。
(3) 扫查面直管与直管对接,探头在焊缝两侧扫查时,可以选择1种K 值的探头;直管与管件对接,探头只能在焊缝一侧进行扫查时,应选择2种折射角相差不少于10度的探头进行扫查,其中较小K值的探头,一次波扫查范围不少于焊缝截面的1/4(4) 探头频率管道探伤宜选择较高频率的探头,以提高指向性和定位精度。
推荐采用频率为5MHz的探头,对于较厚管道(厚度)不小于4 0mm)可以选择2.5M Hz的探头。
对于根部可疑信号,尽可能选择小K 值探头复验"经验表明,小K 值探头定位精度高,误差小。
综合上述条件,不同厚度的管道推荐选择的探头角度和前沿距离见表2,不同曲率的管道推荐选择的探头尺寸见表3。
4 检测灵敏度分析检测标准执行JB/T 4730.3一2005,外径不小于159mm的管子按标准中表19调节检测灵敏度;外径< 159mm 的管子按标准中表30调节灵敏度。
管道对接焊缝中存在的主要缺陷有未焊透、未熔合、内凹、焊瘤、错口、气孔、夹渣和裂纹等。
根部未焊透、未熔合和裂纹属面状缺陷,超声波对其非常敏感。
试验表明,深度为0.5mm 切槽的反射波幅均较高,回波均在判废线上下"因探头的角度不同,回波幅度有所不同,探头折射角度越小,回波幅度越高,因此根部未焊透!未熔合和根部纵向裂纹类面状缺陷一般不会漏检。
5 检测工艺卡编制举例工艺卡的编制原则:工艺卡要能够真正指导检测人员能够看懂,按工艺卡要求可以方便实施"编制检测工艺卡时需重点关注的内容如下:(1) 探头数量和参数能够满足标准和实际检测的需要,能否最大限度地检出危害性缺陷。
(2) 检测面要明确"(3) 试块和检测灵敏度符合标准要求。
下文对管道焊缝超声波检测工艺卡的编制进行举例。
已知某石化装置检修改造工程中有一条规格为219*20mm 的碳钢工艺管道,坡口型式为V型,氩弧焊打底,手工电焊填充、盖面,检测比例为100%。
按按JB/T4730.3一2005标准进行检测,合格级别为一级。
检测工艺卡编制结果见表4。
表4中未对检测技术等级提出要求,这是因为JB/T 4730.3一2005的检测技术等级不适用于直管与管件对接的焊缝检测。
6 典型缺陷信号的识别超声波检测前,应对受检焊缝两侧的壁厚靠近焊缝部位用直探头进行测厚,以确认其真实厚度。
如果测得结果小于标称值的负偏差,则应立即报告委托人;如果测得结果大于或等于标称值,则认为是可以接受的"所测厚度值应在记录中注明,该值即作为判断回波信号的基准。
对回波信号性质的判定要结合材质、坡口和结构型式、焊接工艺和焊接位置、回波位置(包括水平位置和深度位置)、指示长度和取向、最大回波高度、静态和动态波形等进行综合分析"对于可疑信号可更换另一种角度的探头进行验证,以助于缺陷定性和伪信号的识别。
管道焊缝正确判别根部信号的关键是时基线标定要准确,要求深度定位误差不超过0.5mm,否则,根部缺陷信号判断会产生较大误差。
时基线标定完毕后,必须用与所检工件厚度等深或相近的孔进行校验,该孔的最高回波指示值应与深度标称值相当或略小0.1一0.5mm(半孔径),则时基线标定是准确的。
时基线的调节还应考虑试块声速与工件声速的差异,当工件厚度较大时,声速的差别会严重影响定位精度和根部缺陷的判定"如常温测得材质20号钢的横波声速3230m/s,P91的横波声速3301m/s时20号钢的纵波声速5934m/S,P91纵波声速5983m/s。
用KZ探头和20号钢标准试块标定的时基线探测P91钢工件时,由于P91钢的声速较快,其折射角增大,K 值变为K 2.25,探测50mm 厚P91工件其声程增加至123.297mm,较20号钢的声程111.67mm 增加11.62mm,从时基线上观察, 与厚度50mm 的P91钢工件的实际厚度为54mm。