当前位置:文档之家› SNP及检测技术

SNP及检测技术

1定义:单核苷酸多态性(single nucleotide polymorphism,SNP),主要是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性。

它是人类可遗传的变异中最常见的一种。

占所有已知多态性的90%以上。

SNP在人类基因组中广泛存在,平均每500~1000个碱基对中就有1个,估计其总数可达300万个甚至更多。

SNP所表现的多态性只涉及到单个碱基的变异,这种变异可由单个碱基的转换(transition)或颠换(transversion)所引起,也可由碱基的插入或缺失所致。

但通常所说的SNP 并不包括后两种情况。

单核苷酸多态性(SNP)是指在基因组上单个核苷酸的变异,包括置换、颠换、缺失和插入。

所谓转换是指同型碱基之间的转换,如嘌呤与嘌呤( G2A) 、嘧啶与嘧啶( T2C) 间的替换;所谓颠换是指发生在嘌呤与嘧啶(A2T、A2C、C2G、G2T) 之间的替换。

从理论上来看每一个SNP 位点都可以有4 种不同的变异形式,但实际上发生的只有两种,即转换和颠换,二者之比为2:1。

SNP 在CG序列上出现最为频繁,而且多是C转换为T ,原因是CG中的C 常为甲基化的,自发地脱氨后即成为胸腺嘧啶。

一般而言,SNP 是指变异频率大于1 %的单核苷酸变异。

在人类基因组中大概每1000 个碱基就有一个SNP ,人类基因组上的SNP 总量大概是3 ×106个。

依据排列组合原理,SNP 一共可以有6种替换情况,即A/ G、A/ T、A/ C、C/ G、C/ T 和G/ T ,但事实上,转换的发生频率占多数,而且是C2T 转换为主,其原因是Cp G的C 是甲基化的,容易自发脱氨基形成胸腺嘧啶T , Cp G 也因此变为突变热点。

理论上讲,SNP既可能是二等位多态性,也可能是3个或4个等位多态性,但实际上,后两者非常少见,几乎可以忽略。

因此,通常所说的SNP都是二等位多态性的。

这种变异可能是转换(C T,在其互补链上则为G A),也可能是颠换(C A,G T,C G,A T)。

转换的发生率总是明显高于其它几种变异,具有转换型变异的SNP约占2/3,其它几种变异的发生几率相似。

Wang等的研究也证明了这一点。

转换的几率高,可能是因为CpG二核苷酸上的胞嘧啶残基是人类基因组中最易发生突变的位点,其中大多数是甲基化的,可自发地脱去氨基而形成胸腺嘧啶。

SNP 在动物基因组中分布广泛,每一个核苷酸发生突变的概率大约为10 - 9 。

由于选择压力,SNP在单个基因、整个基因组中以及种群间的分布是不均匀的。

SNP 在非编码区中要多于编码区,而且在编码区也是非同义突变(有氨基酸序列的改变) 的频率比其他方式突变的频率低得多[4 ] 。

而基因间,同一种基因中的编码SNP (coding SNP ,cSNP) 的数目也不相同,可从0~29 个不等。

多项研究同时发现不同种族间SNPs 的数目也是不同的,非洲人群及非裔种族中SNPs 数量最多,而其他种群的SNPs 要少得多,因此通过比较亚群间等位基因的频率将有助于阐明种族的结构和进化。

在基因组DNA中,任何碱基均有可能发生变异,因此SNP既有可能在基因序列内,也有可能在基因以外的非编码序列上。

总的来说,位于编码区内的SNP(coding SNP,cSNP)比较少,因为在外显子内,其变异率仅及周围序列的1/5.但它在遗传性疾病研究中却具有重要意义,因此cSNP的研究更受关注。

从对生物的遗传性状的影响上来看,cSNP又可分为2种:一种是同义cSNP (synonymous cSNP),即SNP所致的编码序列的改变并不影响其所翻译的蛋白质的氨基酸序列,突变碱基与未突变碱基的含义相同;另一种是非同义cSNP(non-synonymous cSNP),指碱基序列的改变可使以其为蓝本翻译的蛋白质序列发生改变,从而影响了蛋白质的功能。

这种改变常是导致生物性状改变的直接原因。

cSNP中约有一半为非同义cSNP。

先形成的SNP在人群中常有更高的频率,后形成的SNP所占的比率较低。

各地各民族人群中特定SNP并非一定都存在,其所占比率也不尽相同,但大约有85%应是共通的。

自身的特性:1)SNP数量多,分布广泛。

据估计,人类基因组中每1000个核苷酸就有一个SNP,人类30亿碱基中共有300万以上的遍布于整个人类基因组中,根据SNP在基因中的位置,可分为基因编码区SNPs(Coding-region SNPs,cSNPs)、基因周边SNPs (Perigenic SNPs,pSNPs)以及基因间SNPs(Intergenic SNPs,iSNPs)等三类。

2) SNP适于快速、规模化筛查。

组成DNA的碱基虽然有4种,但SNP一般只有两种碱基组成,所以它是一种二态的标记,即二等位基因(biallelic)。

由于SNP 的二态性,非此即彼,在基因组筛选中SNPs往往只需+/-的分析,而不用分析片段的长度,这就利于发展自动化技术筛选或检测SNPs。

3)SNP等位基因频率的容易估计。

采用混和样本估算等位基因的频率是种高效快速的策略。

该策略的原理是:首先选择参考样本制作标准曲线,然后将待测的混和样本与标准曲线进行比较,根据所得信号的比例确定混和样本中各种等位基因的频率。

4)易于基因分型。

SNPs 的二态性,也有利于对其进行基因分型。

对SNP进行基因分型包括三方面的内容:(1)鉴别基因型所采用的化学反应,常用的技术手段包括:DNA分子杂交、引物延伸、等位基因特异的寡核苷酸连接反应、侧翼探针切割反应以及基于这些方法的变通技术;(2)完成这些化学反应所采用的模式,包括液相反应、固相支持物上进行的反应以及二者皆有的反应。

(3)化学反应结束后,需要应用生物技术系统检测反应结果。

绝大多数疾病的发生与环境因素和遗传因素的综合作用有关,通常认为是在个体具有遗传易感性的基础上,环境有害因素作用而导致疾病。

不同群体和个体对疾病的易感性、抵抗性以及其他生物学性状(如对药物的反应性等)有差别,其遗传学基础是人类基因组序列的变异性,其中最常见的是SNP.易感基因的特点是基因的变异本身并不直接导致疾病的发生,而只造成机体患病的潜在危险性增加,一旦外界有害因素介入,即可导致疾病发生。

另外在药物治疗中,易感基因的变异造成药物对机体的疗效和副作用不同。

随着人类基因组计划的进展,人们愈来愈相信基因组中的SNP 有助于解释个体的表型差异、不同群体和个体对疾病,特别是对复杂疾病的易感性以及对各种药物的耐受性和对环境因子的反应。

因此,寻找和研究SNP 已成为人类基因组计划的内容和目标之一。

多态性与突变的区别1、多态性是一个群体概念,多态性指这个差异占群体的1%以上。

否则就叫突变(小于1%)2、SNP是多态性中的一种,只是进一步限定了差异只是单碱基。

3、SNP一般来说,是全部体一样的基因型(除开嵌合体)。

4、突变一般不是一个个体全部的变化。

5、如果突变发生在生殖,则可以遗传,但是只要这个突变群没有达到总群体的1%,它就只是一个突变株/系。

达到了1%就是多态性了。

常用数据库:Human Gene Mutation Database (HGMD) TSC) 1 cm当前SNP功能研究主要有以下几方面:SNP 的分型技术可分为两个时代,一为凝胶时代,二为高通量时代。

凝胶时代的主要技术和方法包括限制性酶切片段长度多态性分析(RFLP)、寡核苷酸连接分析(OLA)、等位基因特异聚合酶链反应分析(AS2PCR)、单链构象多态性分析(SSCP)、变性梯度凝胶电泳分析(DGGE),虽然这些技术与高通量时代的技术原理大致一样,但是由于它不能进行自动化,只能进行小规模的SNP分型测试,所以必然会被淘汰。

高通量时代的SNP分型技术按其技术原理可分为:特异位点杂交(ASH)、特异位点引物延伸(ASPE)、单碱基延伸(SBCE)、特异位点切割(ASC)和特异位点连接(ASL)5 种方法。

此外,采用特殊的质谱法和高效液相层析法也可以大规模、快速检出SNP 或进行SNP 的初筛。

近年来已经在晶体上用“光刻法”实现原位合成,直接合成高密度的可控序列寡核苷酸,使芯片法显示出强大威力,对SNP 的检测可以自动化、批量化,并已在建立SNP 图谱方面投入实际应用。

芯片法有望在片刻之间评价整个人类基因组。

1)报告基因转染技术:这一技术主要用于研究启动子SNP对于mRNA转录效率,是通过观察转录结局来判断SNP是否具有功能。

2)EMSA技术:通过在体外合成含SNP位点的寡核苷酸与转录因子特异性结合,观察结合的强度和效率,但是该技术由于只人工合成较短长度的寡核苷酸,没有考虑SNP 周围遗传背景环境的影响,因此在重复性和说服力上不强。

3)ChiP技术:该技术通过超声将染色体碎片化,再将碎片化的核酸与转录因子的结合,最后通过PCR技术观察判断结合的效率和强度,该技术克服了EMSA的一些缺点,当前做的文献较多。

5 SNP产生功能的机制研究的个人之所见1.对大多数SNP而言,都由于位于一些非编码区域而不产生明显的功能性影响,此时做SNP功能意义不大。

2.启动子SNP研究是做的人最多的,相关实验技术都比较成熟,其产生功能的机制主要是影响TF与启动子的的结合能力,从而调控基因的转录。

3.编码区SNP有同义和非同义2种,非同义突变由于会导致氨基酸的变化,从而影响蛋白质的功能,特别是发生在结构功能区域的SNP尤其重要,可是这方面的技术还存在瓶颈,做得相当少,据我所知要用什么诱导点突变的方法再去评价蛋白质功能的。

至于非同义突变,虽然没有明显的功能的分子机制,但是在遗传学上可能因为与附近的其它致病基因的表达或者SNP连锁,因此在流行病学上形成阳性结果一般以此解释。

4.内含子区域SNP产生功能的分子机制一般是与附近其它基因SNP连锁或者可能影响mRNA的剪接从而影响蛋白质的功能——很多研究中做INTRON发现有阳性结果解释不了,而且大多只是猜测。

PYRO测序用于SNP基因分型其实是一种段片段焦磷酸测序技术,在测序引物的引导下,完成段片段(含snp)的测序,从而实现基因分型。

缺点:不能检测长片段,对于重复序列没有办法。

原理简介1.测序引物与单链,PCR扩增的DNA模板相结合。

然后将其与DNA聚合酶、ATP硫酸化酶、荧光素酶和三磷酸腺苷双磷酸酶,以及底物APS和荧光素一起孵育。

2.四种dNTP之一被加入反应体系,如与模扳配对,此dNTP与引物的末端形成共价键,dNTP的焦磷酸基团(PPi)释放出来。

而且释放出来的Ppi的量与和模板结合的dNTP的量成正比。

sulfurylase在adenosine 5′ phosphosulfate存在的情况下催化PPi形成ATP,ATP驱动luciferase介导的Luciferin向oxyluciferin的转化,oxyluciferin发出与ATP量成正比的可见光信号。

相关主题