当前位置:文档之家› 农作物秸秆生成燃料乙醇项目建议书

农作物秸秆生成燃料乙醇项目建议书

农作物秸秆生产燃料乙醇项目建议书二0一三年十二月一、项目概况项目名称:农作物秸秆生产燃料乙醇项目法人单位:建设地址:建设性质:新建二、项目提出理由能源是人类生存和发展的基本需求。

随着社会经济的持续高速发展,用以支撑社会进步的一次能源的代表——石油,已成为现代文明赖以生存的“血液”。

然而,地球上的一次能源是有限的、不可再生的,并且已呈逐渐枯竭之势。

据联合国能源组织多次评估,再过50年左右,地球上的石油储量大工业化开采将趋结束。

能源短缺已是现代社会面临的一个重大问题。

为了寻求替代能源,几十年来,人们做出了不懈努力,通过大量的研究、对比和实践,来寻找可方便制取、使用的可再生能源。

近些年来,世界将目光集中到生物燃料乙醇上来。

我国对生物燃料乙醇发展特别谨慎。

在2008年6月召开的全球粮食安全高级别会议上,我国表示:将坚持走有中国特色的生物能源发展道路,坚持“不与人争粮、不与粮争地”的原则,严格控制用玉米、油料等粮油产品生产生物燃料,坚持充分利用秸秆、畜禽粪便等农业农村废弃物发展生物质能源。

农村废弃物如稻草、玉米秸秆、麦秸、蔗渣及森林工业副产品等具有来源丰富,品种多,再生时间短等优点。

目前没有得到充分利用,而且常常造成环境污染。

据统计,全世界每年可生产生物质2200×108相当于目前世界能源消耗的8~10倍。

因此,如何成功地开发这一资源作为液体燃料,已成为世界各国普遍重视的研究课题。

乙醇是来自可再生资源的最有发展前景的液体燃料,但目前生物法生产的乙醇还主要来自糖类和淀粉发酵,面对世界人口的急剧膨胀和粮食短缺,用粮食生产酒精的发展将受到限制。

近年来,利用生物技术转化农业废弃物秸杆中的纤维素生成酒精的工艺因其具有循环经济和低碳经济(作物的光合作用取碳于大气,而作为燃料则把碳放回大气,实际是“无碳经济”)的特征,以及不与粮争地和变废为宝的特点,而引起了人们的浓厚兴趣,被认为具有良好的发展前景。

燃料乙醇的使用,可减少原油的消耗,保护宝贵的不可再生资源,可以显著提高汽油的辛烷值,防止发动机爆震,减少运输设备的损耗,可以减少汽车尾气中C02、CO、S02等对环境的污染,尤其可大量减少臭氧排放量,保护地球大气环境。

因此,这项技术也更符合我国的国情。

事实上,自20世纪60年代第一次能源危机以后,许多发达国家和部分发展中国家即根据各国具体资源情况着手燃料乙醇的开发,如美国以玉米为主,而巴西、印度等以糖蜜为主,在美国每年生产的燃料乙醇在500万吨以上。

在巴西,汽车所需燃料的43%以上已使用燃料乙醇。

燃料乙醇的使用不仅减少了该国对进口石油的依赖,还为该国创造500万人的就业机会。

在我国,燃料乙醇的生产与使用问题已提出多年,引起了党中央和国务院的高度重视,明确要求加快燃料乙醇产业的发展。

秸杆燃料乙醇以玉米、水稻等农作物秸杆为原料,经预处理、水解、发酵、蒸馏和脱水等工艺而制成。

乙醇脱水后得到无水乙醇(99.5%V/V),它是一种高热值燃料,每千克发热能2.97x104kj。

无水乙醇添加适量变性剂后形成变性燃料乙醇,再把变性燃料乙醇和汽油以一定的比例混配形成车用乙醇汽油(将乙醇按10%~15%的比例加入汽油中作为燃料,现有发动机不经过任何改装即可正常运行)。

农作物秸秆燃料乙醇的生产与使用,对我国农业发展有其重要的作用。

我国是农业大国,农作物秸秆产量约为7亿吨/年,居世界首位。

农作物秸秆的主要成分为纤维素、半纤维素和木质素,是一种宝贵的可再生资源。

目前,我国秸秆的主要用途是造纸、饲料、农村生活能源,还有一部分用来还田造肥,另有约15.6%的秸秆被废弃或焚烧。

利用农作物秸秆生产燃料乙醇,既能解决原料问题,又能变废为宝,增加农民收入。

我县秸杆资料更加丰富,除少部分还田和做为生活燃料外,大部分焚烧了,造成了环境的污染和资源的浪费。

二、技术的可行性分析1、秸杆燃料乙醇生产技术现状成熟的技术是实现工业产业化的前提。

以秸杆为原料生产乙醇是国内外十分关注的课题。

国内以农林废弃物为原料制备燃料乙醇的研究单位很多,并取得了可喜的成果。

中科院过程所开发了秸秆酶解发酵燃料乙醇新技术,在不加酸碱的秸秆汽爆处理技术、秸秆固相酶解发酵气提分离乙醇耦合体系和纤维素酶固态发酵系统等方面取得了多项自主知识产权,并完成了3000t/a秸秆发酵生产燃料乙醇的中试。

厦门大学通过化学诱变和物理诱变方法,对灰绿曲霉等分解菌株进行突变,获得高活力的突变株,其活性比出发菌株高50%,筛选的酵母菌株用于秸秆制乙醇转化率大于10%。

利用灰绿曲霉对甘蔗渣、稻草秸秆进行分解,蔗糖的转化率可达40%,稻草秸秆的转化率达45%。

河南天冠集团与山东大学、浙江大学等合作,攻克了利用秸秆为原料制备乙醇的关键技术,使原料转化率超过了18%,完成了300t/a的中试。

山东大学开发了从原料玉米芯生产低聚木糖、木糖醇的技术,以废渣为原料的乙醇收率高达20%以上,已完成了3000t/a中试。

华东理工大学完成了600t/a以秸秆为原料生产燃料乙醇的中试。

清华大学也完成了以秸秆为原料制备燃料乙醇的中试。

此外,中国农林科学院麻类研究所和陕西师范大学合作开展麻类纤维素预处理、糖化液酵解制备燃料乙醇的研究,将超临界二氧化碳、酶法脱胶、微生物发酵技术和酶工程有机结合在一起,该技术可使麻类、玉米芯和芦苇的总糖转化率达67%,糖醇转化率达43%。

这些研究为以农林废弃物作原料生产燃料乙醇打下了良好的基础。

从现有的技术分析,采用酶水解技术更为合适。

与酸水解相比,酶水解可在常压下进行,能量消耗低,产率较高。

但是由于国内在酶生产技术、戊糖发酵菌株构建等方面还没有取得根本性突破,生产技术尚未完全成熟。

目前国内所进行的中试研究,每吨燃料乙醇消耗原料都在6t以上,生产成本在5000-6500元/t,还不适合产业化生产。

据悉,今后在技术上的研究重点为:①原料的预处理技术。

农林废弃物的主要成分是纤维素、半纤维素、木质素,只有纤维素能被降解转化为乙醇,因此要开发高效的原料预处理技术,从农林废弃物中获得最大量的纤维素。

②开发高活性的纤维素酶。

纤维素酶存在生产效率低和生产成本高的问题,目前生产1gal(1gal=3.785L)乙醇纤维素酶的费用为30~50美分,必须研究开发高活性的纤维素酶,使纤维素酶的成本降到5美分/gal乙醇才具竞争力。

③开发高效的发酵和分离提取工艺。

目前燃料乙醇生产存在原料消耗、能耗高,转化率、收率低的问题,应开发高效的发酵和分离提取技术和工艺,降低原料消耗和能耗,提高转化率和收率。

国际上,已有国家在研发试验以纤维素为原料的燃料乙醇生产技术,加拿大Iogen公司在纤维乙醇技术开发领域居世界领先地位,于2008年率先建成世界第一座工业规模纤维乙醇综合厂。

壳牌投资4600万美元,建设年产20万t燃料乙醇的商业化生产线。

德国正在开发使用木材和麦秆等生产高级柴油的技术。

美国能源部也支持了一个投资巨大的纤维素乙醇中试及产业化攻关项目,旨在利用木材、稻草、玉米秸等纤维素废料生产燃料乙醇,其中仅发展高效纤维素水解酶技术的公司就获得能源部的3200万美元的政府拨款资助。

在国家产业政策的扶持下,我国正逐步开展以纤维为原料生产燃料乙醇的工作。

2006年8月,河南天冠集团开始建设年产3000吨的纤维素乙醇项目。

这是国内首条纤维素乙醇产业化生产线。

这一生产线的建设与投入使用,将使得利用农作物秸秆类纤维质原料生产乙醇成为现实,其意义非常深远。

由于受规模限制,纤维乙醇的生产成本高达6000至6500元/吨,按当时成本计算,比小麦为原料生产燃油乙醇的成本高500元至1000元,但是随着试验成功,产能扩大后,成本有望降低。

中粮集团500t/a纤维素中试装置于2006年11月22日一次试车成功,在世界上首次将连续汽爆技术应用于纤维乙醇生产,所用纤维素酶是中粮集团与丹麦诺维信公司联合开发的,从试验结果看各项技术指标均达到国际先进水平。

以秸杆为原料生产乙醇首先面临的是原料体积庞大,收集、运输、储存问题需很好解决;其次是原料木质素含量较高,当采用酸解预处理时所产生的酸性废水必须好好解决;最后是酶制剂所占成本比重很大,导致燃料乙醇成本偏高。

2、生产技术概述以秸杆为原料生产乙醇的工艺为:秸秆→预处理(有酸处理法、蒸汽爆破法、湿氧化法等)→水解工艺(有稀酸、浓酸、酶水解)→发酵(有同步糖化发酵法、固定化细胞发酵、木糖发酵)→出池→蒸馏→脱水→变性处理→燃料乙醇。

(1)原料农作物秸秆主要是由纤维素、半纤维素和木质素三大部分组成。

纤维素的化学组成十分简单,是由β-D一葡萄糖通过β—1,4-苷键连接而成的线型结晶高聚物,它容易被纤维素酶水解,产生葡萄糖,进而通过发酵生产乙醇,是生产农作物秸秆燃料乙醇的主要物质,其含量约占总量的40%~50%。

半纤维素在结构和组成上变化很大,一般由较短、高度分枝的杂多糖链组成,链上连接着数量不等的甲酰基和乙酰基,其分支结构使半纤维素无定形化,比较容易被水解成其组成的糖类,但其所含的五碳糖不能被发酵利用,含量约占总量的20%~30%。

木质素是以苯丙基为基本结构单元连接而成的高分枝多分散性高聚物,非常难于被降解。

纤维素是细胞壁的主要成份,在纤维素的周围充填着半纤维素和木质素,阻碍了纤维素酶同纤维素分子的直接接触。

可用于转化成酒精的生物质资源除农作物秸杆外,还包括针叶材、阔叶材、森林加工剩余物、农林废弃物以及城市纤维垃圾等,通过化学和生物化学的方法可将纤维素和半纤维素水解成单糖,继而发酵成酒精。

(2)预处理植物细胞壁中,微纤丝被半纤维素和木质素通过物理和化学作用所包裹,不利于纤维素酶对纤维素的进攻,未经预处理的植物纤维原料的天然结构存在许多物理和化学的屏障作用,纤维素酶水解得率低,仅为10%~20%左右,植物纤维原料在酶水解前必须经过预处理,达到细胞壁结构破坏(包括破坏纤维素-木质素-半纤维素之间的连接、降低纤维素的结晶度和除去木质素或半纤维素)、增加纤维素比表面积的目的,以便适合于纤维素酶的作用。

植物纤维原料预处理的方法很多,包括物理法、化学法、生物化学法以及以上几种方法的联合作用。

物理法预处理需要较多能量,预处理成本高,而且水解得率低;化学法预处理的不利因素是处理后的原料在产酶或酶解前需用酸或碱中和,产酶时间较长;利用白腐菌预处理的一个主要缺点是白腐菌在除去木质素的同时分解消耗部分纤维素和半纤维素。

因此,物理法、化学法、生物法都不适合作为工业化生产的。

(3)纤维素酶及酶水解纤维素酶是降解纤维素成为其葡萄糖单体所需的一组酶的总称,它不是单种酶,而是起协同作用的多组分酶系。

一般认为主要包括三类酶组分:内切葡聚糖酶(EG)、外切葡聚糖酶(CBH)和纤维二糖酶(CB)。

它们的水解机理是:EG以随机形式水解β-1,4-葡聚糖,作用于较长的纤维素链,对末端键的敏感性比中间键小,主要产物是纤维糊精;CBH能从纤维素链的非还原端或者还原端一个一个地依次切下纤维二糖单位;CB能水解纤维二糖和短链的纤维寡糖生成葡萄糖。

相关主题