电容式接近开关
为了获得较好的线性关系,一般谐振电路的工作点选在谐振曲线的一
边,即最大振幅Um 的70%附近地方,如图所示,且工作范围尽量选 在接近线性的BC段内。 这种电路的特点是比较灵敏,但缺点是:
•(1)工作点不容易选好,变化范围也较窄;
•(2)传感器与谐振回路要离得比较近,否则电缆的杂散电容对电路的
•
影响较大;
d d0
则灵敏度系数
kC2C0
d
d0
2s
d02
结论:
①差动结构可使传感器灵敏度提高一倍。
②减小了非线性误差。
③能够更好地克服温度等外界共模信号干扰。
2.变面积式电容式传感器
x θ
S
C
0
d
S (1 q / p )
C
C (1 q / p )
x
d
0
a)
动极板有角位移时,与定极板的有效面积变化, 变面积式电容传感器的输出特性是线性的,灵敏度 是常数。这一类传感器多用于检测直线位移、角位 移、尺寸等参量。
三、电容式传感器的应用 1.压力测量
电容式压力传感器结构图
2.声音信号测量
驻极体电容传声器
它采用聚四氟乙烯材料作为振动膜片。这种材料经特 殊电处理后,表面永久地驻有极化电荷,取代了电容传声 器极板,故名为驻极体电容传声器。特点是体积小、性能 优越、使用方便。
电子线 路位置
高压侧 进气口
低压侧 进气口
电压或频率信号
2. 变压器电桥电路
Cx1 C0 C Cx2 C0 C
•
•
•
•
•
U
U o U Cx2 2
=U
Z Z Cx1
Cx2
ZCx2
U 2
•
•
•
U
1 U =U Cx1 Cx2
11
jCx2 2 2 Cx1 Cx2
jCx1 jCx2
可得:
•
•
U
o
U
C
2 C0
对于变间隙式差分电容传感器经分析推导可得:
c
A dg d0
0 g 0
3、边缘效应
电容器两极板的电场分布在中心部分是均匀的,但到了边 缘部分是不均匀的,因此边缘效应使设计计算复杂化、产生非 线性以及降低传感器的灵敏度。消除和减小边缘效应的方法是 在结构上增设防护电极,防护电极必须与被防护电极取相同的 电位,如图所示,这样可以使工作极板全部面积处于均匀电场 的范围。
•
• U d Uo
2 d0
(其 C x1中 d0 A d, C x2d0 A d)
优点:把变间隙式电容传感器的位移与电容的非线 性关系 转化为位移与输出电压的线性关系。
缺点:由于电路输出为交流电,应进行相敏检波 后,才能辨别位移方向。
3.调频电路
电容式传感器作为振荡器谐振回路的一部分,当输入量 使电容量发生变化后,就使振荡器的振荡频率发生变化,频 率的变化在鉴频器中变换为振幅的变化,经过放大后就可以 用仪表指示或用记录仪器记录下来。
k不是常数,且与d
2
0
成反比。极距越小灵敏度越高,
但非线性误差会越大。实际应用中为提高灵敏度和扩
大线性范围,多采s 01 1 d 1 c 0d C 0 [ 1 d d 0 ( d d 0)2 ( d d 0)3 ....
d 0
1、原理框图
2、电路原理
3、注意事项
1)C4093为CMOS集成电路,很容易被电烙铁所带 的静电击穿,所以在制作时,最好先焊一个集成电路插 座,待电路经检查无误后再把CD4093插入插座。
2)电容C4是灵敏度调节电容,若需要该电路以最大灵 敏度工作时,可以先调节C4使继电器刚好吸合,再调 节C4使继电器刚好断开,然后用高频蜡或绝缘漆把C4 封牢即可。
选用温度膨胀系数小、几何尺寸稳定的材料。例如电极的支架选用陶 瓷材料要比塑料或有机玻璃好;电极材料以选用铁镍合金为好;近年来采 用在陶瓷或石英上喷镀一层金属薄膜来代替电极,效果更好。减小温度误 差的另一常用措施是采用差动对称结构,在测量电路中加以补偿。
2、电容静电击穿
电容传感器虽然有许多独具的优点,但由于它的工作原 理、结构特点而使它也存在一些缺点,在实际使用时需采取 相应的技术措施来改善。
式中d1,d2 ─ 分别为C1,C2电极极板间的距离。 当差动电容C1=C2=C0时,即d1=d2=d0时,Uo=0。当差动 电容C1≠C2,设C1>C2,即d1= d0-△d,d2= d0+△d, 则式
d Uo d0 U1
(2)在变面积的情况下有
Uo
UA
BSS11
S2 S2
U1
式中S1,S2─—分别为C1,C2电极极板面积。
利用加速度传感器实现 延时起爆的钻地炸弹
传感器安装位置
4.转速测量
电容传感器转速测量动画演示
5.料位和液位测量
AM90系列电容物位仪
电容料位测量示意图
1-极棒 2-容器壁
液位计
设定按钮
聚四氟乙烯外套
电容式油量表原理图
两电极间的介质即为液体及其上面的气体。由于液体的 介电常数ε1和液面上的介电常数ε2不同,比如:ε1>ε2,则当 液位升高时,两电极间总的介电常数值随之加大因而电容量 增大。反之当液位下降,ε值减小,电容量也减小 。
d 0
C 2 d 0 s d d s 01 1 d 1 c 0 d C 0 [ 1 d d 0 ( d d 0)2 ( d d 0)3 ....
d 0
d 0
C C 1 C 2 2 C 0 d d 0[1 ( d d 0)2 ( d d 0)4 .......
忽略高次项得
C
2C0
1、寄生电容存在对传感器的影响 2、克服寄生电容:静电屏蔽
使传感器的电容量发生改变
导致传感器特性不稳定,并 产生干扰
五、电容式接近开关设计 被测物体 感应电极
振荡电路
测量头构成电容器的一个极板,另一个极板是物体本身,当物 体移向接近开关时,物体和接近开关的介电常数发生变化,使 得和测量头相连的电路状态也随之发生变化.由此便可控制开 关的接通和关断;接近开关的检测物体,并不限于金属导体, 也可以是绝缘的液体或粉状物体。
•(3)为了提高测量精度,振荡器的频率要求具有很高的稳定性。
.
电容传感器的谐振电路
4. 脉冲宽度调制电路
经分析推导得:
U0=C C11- +C C22U1= CC 0 U1
由图可见A,B两点平均电压值UAB为零。但是,差动电 容C1和C2值不相等时,如C1>C2,则C1和C2充放电时间
常数就发生改变,这时电路中各点的电压波形如图(b)所 示,由图可见,A,B两点平均电压值不再为零。当矩形电 压波通过低通滤波器后,可得出直流分量:
谐振电路
谐振式电路的原理方框图,电容传感器的电容Cx作为谐振回路(L2,C2 ,Cx)调谐电容的一部分。谐振回路通过电感耦合,从稳定的高频振荡器 取得振荡电压。
工作原理: 当电容传感器的电容Cx发生变化时,谐振回路的谐振频率发生变化,相
对于高频振荡器的频率来说是失谐的,这样使得谐振回路两端的电压振幅也 就发生了变化,也就是说,该电路具有将电容Cx的变化转换为谐振回路两 端电压振幅变化的作用,即谐振回路两端将获得一个受电容Cx变化量调制 的调幅波。该调幅波经检波器检波后,再经过放大器放大即可指示出输入量 的大小。
3.变介电常数电容式传感器 变介电常数电容式传感器原理动画演示
常用材料的介电常数
经推导可知变介电常数式电容传感器其电容 与位移或液体高度成线性关系,可由以下表达式 表示:
Cx ABx
其中A、B均为与结构和介质有关的常数
三种电容式传感器比较表
二、测量转换电路
电容式传感器
测量电路
1.运算放大器电路
Uo UABTT11TT22U1
T1 ─ C1的充电时间; T2 ─ C2的充电时间; U1 ─ 触发器输出的高电位
由于U1的值是已知的,因此,输出直流电压UAB随T1和 T2而变,亦即随UA和UB的脉冲宽度而变,从而实现了输出 脉冲电压的调宽。当然,必须使参考电位Uf小于U1。由电路 可得出,电容C1和C2的充电时间为:
Uo
S S U1
由此可见,对于差动脉冲调宽电路,不论是改变平板电 容器的极板面积或是极板距离,其变化量与输出量都成线性 关系。
公式与变压器电桥形式相同,但变压器电桥输 出的是交流电,而脉冲调宽电路输出的是直流电。 脉冲调宽电路具有以下五方面的特点: ①消除了非线性; ②不需要相敏检波即能获得较大的直流输出; ③电路只采用直流电源,不需要频率发生器; ④频率对输出无影响; ⑤对输出矩形波纯度要求不高。
电容C1和C2的充电时间为:
T1 R1C1lnU1U1Uf
T2
R2C2
ln U1 U1 Uf
电阻R1=R2=R, 综合以上三式:
Uo UABC C11C C22U1
上式说明,直流输出电压正比于电容C1与C2的差值,其 极性可正可负。
说明: (1)利用平行板电容公式,在变间隙的情况下可得:
Uo UABdd22 dd11U1
思考题
1、试分析变面积式电容传感器和变间隙式电容 的灵敏度?为了提高传感器的灵敏度可采取什么 措施并应注意什么问题? 2、为什么说变间隙型电容传感器特性是非线性 的?采取什么措施可改善其非线性特征?
A C0 d0
Cx
A d0
x
变极距式电容传感器原理动画演示
结构示意图
1-定极板 2-动极板
电容量与极板距离的关系
变极距式电容传感器结构及特性曲线
C
s1 d02
d
C C
则灵敏度系数
k
c d
s
1 d02
C 1C 1