仪表防爆知识付永信(完成时间2011-3-14)摘要:随着我们公司业务在化工行业的拓展,在仪表和相关部件选型时经常会遇到防爆的技术要求,大家在设计和选型时往往觉得没有概念、无从下手。
本文从防爆的基本原理着手,对仪表的防爆类型、防爆等级、防爆仪表分类等进行讲述,结合对危险环境的分析,帮助读者从根本上理解和掌握防爆仪表的选型方法。
最后对防爆系统中最为常用的关联设备——安全栅进行了原理和选型方面的阐述,希望通过此文能帮助大家对防爆产品有个基础全面性的了解,并能做出正确的选型应用。
关键词:防爆 仪表 安全栅附件清单:无一、为什么要防爆在工业现场的很多生产场所都会产生某些可燃性物质:煤矿井下约有三分之二的场所存在爆炸性物质;化工行业中,约有 80% 以上的生产车间区域存在爆炸性物质。
这些爆炸性物质与空气中的氧气不断混合,当爆炸性物质与氧气的混合浓度处于爆炸极限范围内时,若生产过程中使用电气仪表或其它设备产生了火花或高温,其形成的点燃源便会点然气体形成爆炸,给生产带来灾难性的后果。
二、如何防爆,暨防爆原理及对应的防爆型式分类如何防爆,先从爆炸必须具备的三个条件说起: 1 )爆炸性物质:能与氧气(空气)反应而形成爆炸源的物质,包括气体、液体和固体。
(气体:氢气,乙炔,甲烷等;液体:酒精,汽油;固体:粉尘,纤维粉尘等。
)2 )氧气:空气中到处存在。
3 )点燃源:包括明火、电气火花、机械火花、静电火花、高温、化学反应、光能等。
防止爆炸,就是要避免爆炸发生的三个条件同时存在。
由于氧气(空气)无处不在,难以控制。
因此,控制易爆气体和引爆源为两种最常见的防爆原理。
而在仪表行业中还有另外一种防爆原理:控制爆炸范围。
仪表中常见的几种防爆原理:1、间隙防爆:早在19世纪初德国科学家贝林(Beyling)在研究火焰穿过金属间隙现象时,发现间隙宽度小到一定程度,可以使圆柱形的法兰容器内甲烷与空气混合物的爆炸不会引起容器周围甲烷与空气混合物的爆炸。
究其原因主要是因为金属间隙能阻止爆炸火焰的传播和冷却爆炸产物的温度,达到熄灭火焰和隔离爆炸产物穿出的效果,俗称“隔爆技术”。
隔爆型电气设备就是按此原理设计、制造而成的。
隔爆间隙种类主要有平面接合面、止口接合面、圆筒接合面、螺纹接合面。
另外,金属微孔(粉末冶金)、金属网罩、充砂等结构型式,也源自间隙防爆原理。
2、减小点燃能量防爆:几乎在发明间隙防爆原理的同一时期,英国科学家提出:限制电路中的电气参数,降低电路的电压和电流或者采取某些可靠保护电路,阻止强电流和高电压窜入爆炸危险场所,保证爆炸危险场所中电路产生的开断路电火花或热效应能量小于爆炸性混合物的最小点燃能量,点燃不起爆炸性混合物。
本质安全型仪表就是按此原理进行设计、制造的。
本质安全型电气设备结构简单、体积小、重量轻、制造和维护方便,具有可靠的安全性,能直接应用在最危险的0区场所。
因此,此类电器设备被广泛地应用在石油、化工等大型工程上,并逐渐地替代笨重的隔爆型结构。
3、阻止点火源与爆炸性混合物相接触的防爆:根据燃烧和爆炸三要素原理,采取一些可靠的隔离措施,使点火源与周围爆炸性混合物不能直接接触,从而达到防爆目的,俗称“隔离技术”。
隔离技术是通过点火源与爆炸性混合物的有效隔离,达到防爆目的。
当前,国内外已有的隔离措施包括油隔离、浇封隔离、隋性气体隔离、充入正压空气隔离等。
相对应的防爆技术就是人们熟识的油浸型、浇封型、正压外壳型等。
4、特定条件下提高电气安全措施防爆:在正常运行时不会产生电火花、电弧和危险温度的电气设备,为了确保安全可靠性,通过适当提高电气安全措施来达到防爆。
常见的电气设备有无电刷电动机、变压器、接线盒、阀门定位器等。
提高电气安全措施的方法有增大接线端子之间和对外壳的电气间隙和爬电距离、增强接线的防松措施、提高绝缘材料的绝缘等级、提高 外壳的防护等级、增加外壳的散热措施等。
增安型电气设备就是用这一原理进行设计、制造的。
正如前面介绍中提到的,基于不同的防爆原理,人们设计出各种各样的防爆型式,已标准化的常用仪表(电气设备)的防爆型式如下表:1、隔爆型电气设备(d)具有隔爆外壳的电气设备,是指把能点燃爆炸性混合物的部件封闭在一个外壳内,该外壳能承受内部爆炸性混合物的爆炸压力并阻止向周围的爆炸性混合物传爆的电气设备。
2、增安型电气设备(e)正常运行条件下,不会产生点燃爆炸性混合物的火花或危险温度,并在结构上采取措施提高其安全程度,以避免在正常和规定过载条件下出现点燃现象的电气设备。
3、本质安全型电气设备(i)在正常运行或在标准试验条件下所产生的火花或热效应均不能点燃爆炸性混合物的电气设备。
本安型电气设备及其关联设备,按本安电路使用场所和安全程度分为ia和ib两个等级。
ia级本质安全设备在正常工作、发生一个计数故障、发生二个计数故障时均不会使爆炸性气体混合物发生爆炸。
ib级本质安全设备在正常工作、发生一个计数故障时均不会使爆炸性气体混合物发生爆炸。
有的资料上还有ic级,ic级本质安全设备在正常工作时不会使爆炸性气体混合物发生爆炸。
4、正压型电气设备(p)具有保护外壳,且壳内充有保护气体,其压力保持高于周围爆炸性混合物气体的压力,以避免外部爆炸性混合物进入外壳内部的电气设备。
5、充油型电气设备(o)全部或某些带电部件浸在油中使之不能点燃油面以上或外壳周围的爆炸性混合物的电气设备。
6、充砂型电气设备(q)外壳内充填颗粒材料,以便在规定使用条件下,外壳内产生的电弧、火焰传播、壳壁或颗粒材料表面的过热温度均不能够点燃周围的爆炸性混合物的电气设备。
7、无火花型电气设备(n)在正常运行条件下不产生电弧或火花,也不产生能够点燃周围爆炸性混合物的高温表面或灼热点,且一般不会发生有点燃作用的故障的电气设备。
8、浇封型电气设备(m)浇封型防爆型式是将可能产生引起爆炸性混合物爆炸的火花、电弧或危险温度部分的电气部件,浇封在浇封剂(复合物)中,使它不能点燃周围爆炸性混合物。
9、粉尘防爆型(DIP)为防止爆炸性粉尘进入设备内部,外壳的接合面应紧固严密,并须加密封垫圈,转动轴与轴孔间要加防尘密封。
三、爆炸性物质的分类、分级和分组防爆仪表是专门用于存在爆炸性物质场所的设备,其设计和选型与爆炸性物质的特性密切相关。
z爆炸性物质的分类我国和IEC标准规定要求一样,将爆炸性物质分为三类(英文称之为“Group" ):Ⅰ类:矿井甲烷;Ⅱ类:爆炸性气体混合物(含蒸气、薄雾);Ⅲ类:爆炸性粉尘和纤维。
我国所指的Ⅰ类爆炸性物质是指矿井甲烷,俗称“瓦斯”气体。
造成煤矿爆炸的主要原因是矿井中甲烷气体浓度达到爆炸极限,遇点燃源引起爆炸。
由于煤矿井下环境特殊,故把甲烷专门列为I类。
矿用防爆电器设备主要是能防止甲烷爆炸,其他可燃气体在矿井中含量甚少,在电气防爆性能方面不做专门考虑。
所以矿用防爆电气设备在其他危险场所中不适用。
Ⅱ类爆炸性物质包括爆炸性气体和爆炸性蒸气。
所谓爆炸性气体是指可燃气体.即氢、一氧化碳、环氧乙烷等与空气混合,浓度达到爆炸极限时的气体混合物。
所谓爆炸性蒸气是指易燃液体(丙酮、汽油等)的蒸气或细小液滴与空气混合,浓度达到爆炸极限的气体混合物或薄雾。
需要指出的是,相互接触能自动发生爆炸的气体、蒸气不在此列。
例如氟与氢、氯与乙炔、臭氧与乙醇蒸气等形成的爆炸性气体不属Ⅱ类,因为这些爆炸性气体相遇引起爆炸的原因与前述不同。
Ⅲ类爆炸性物质包括爆炸性粉尘和爆炸性纤维。
它是指能产生爆炸的粉尘、纤维,包括可燃性粉尘或纤维(如棉花纤维)与空气混合,浓度达到爆炸极限的混合物。
由于导电粉尘具有更大的危险性,因此爆炸性粉尘按其导电性能,分为导电粉尘(如铝粉等)和非导电粉尘(如淀粉等)。
炸药类粉尘(或纤维)爆炸时威力很大,电气设备需具备足够强度才不致被破坏。
因此,炸药类物质不属于爆炸性粉尘、纤维之列。
爆炸性粉尘环境用电气设备不适用于炸药生产场所。
z爆炸性气体的分级通常爆炸性气体按其最大试验安全间隙( MESG)和最小点燃电流比(MICR)进行分级。
(1)按最大试验安全间隙( MESG)分级:实验表明,不同的爆炸性混合物其最大试验安全间隙不尽相同,所以爆炸性气体分级的方法之一可以采用MESG进行分级。
MESG测定的标准方法是采用IEC60079-1A文件规定的试验容器完成的。
隔爆型电气设备的设计就是以MESG为基础的。
经实验测定,Ⅰ类甲烷气体的MESG =1.14 mm,Ⅱ类爆炸性气体的分级限值规定如下:A级:0.9 mm<MESG<1.14 mm;B级:0.5 mm≤MESG≥0.9 mm;C级:MESG < 0.5 mm;因此,A级隔爆型电气设备其隔爆间隙必须小于1.14 mm,而C级必须小于0.5 mm,两者是不同的。
可见适用于A级爆炸性物质的隔爆型电气设备不适用于B级或C级爆炸性物质的场所。
如果设备选型不当,就可能失去防爆作用。
(2)按最小点燃电流比(MICR)分级:试验表明,在规定的标准试验条件下,不同物质产生点燃所需的电流大小各不相同。
不同爆炸性物质(气体、蒸气)的最小点燃电流可应用IEC79-3规定的本质安全电路的火花试验装置测定。
所谓最小点燃电流比是指用甲烷的最小点燃电流(MIC)为参考,以气体的最小点燃电流除以甲烷的最小点燃电流,即:MICR=MIC某物质/MIC甲烷。
实验结果显示,所有爆炸性气体、蒸气的最小点燃设备的设计就是以MICR为基础的。
根据MICR定义可知,甲烷的最小点燃电流比为1.0,其他Ⅱ类气体的分级限值规定如下: A级:0.8 < MICR<1.0;B级:0.45 ≤ MICR≥0.8 ;C级:MICR <0.45分析表明,爆炸性气体、蒸气的最大试验安全间隙(MESG)越小,最小点燃电流也越小。
若按最小点燃电流分档归纳分级,与按最大安全间隙分级,两者结果十分相似。
据此,中国和绝大多数IEC成员国一样,将煤矿甲烷以外的全部爆炸性蒸气、气体分成A,B,C三级。
其中,A级的代表气体为丙烷,B级的代表气体为乙烯,C级的代表气体为氢气。
北美国家将爆炸性气体表述为C1assⅠ,并细分为A,B,C和D四级(英文称之为"Group",也可译为“组”)。
其中,Group A的代表气体是乙炔;Group B的代表气体是氢气;Group C的代表气体是乙烯;Group D的代表气体是丙烷和甲烷。
在应用中需注意两个标准的区别不要混淆。
下表给出了中国与北美气体分级对应关系。
从表中可以看出,甲烷需要的点燃能量最大,ⅡC级气体则最易被被点燃。
z爆炸性气体的温度分组和IEC标准的规定一样,我国将爆炸性气体按其引燃温度分为T1-T6六个组别。
北美对温度组别的划分与IEC基本一致,他们只是将部分温度组别划分得更细而已,共计分成14个温度组别。