当前位置:文档之家› 压电加速度测试系统设计

压电加速度测试系统设计

课程设计说明书题目:压电加速度测试系统设计课程:工程测试技术院、系:机电工程学院学科专业:机械设计制造及其自动化学生:李崧伟,刘嘉豪学号: ***********,*********** 指导教师:***2016 年 6 月15号工程测试技术课程设计任务书(2015—2016学年第 2 学期)指导教师齐忠霞2016 年 6 月15 日目录1.简介2.测试方案设计3.测试系统组成3.1压电加速度传感器3.1.1组成3.1.2工作原理3.1.3灵敏度3.1.4加速度传感器的选用3.2电荷放大器3.2.1测试电路图3.2.2数据计算处理3.3动态信号分析仪4.实验测试流程5.说明总结6.参考文献压电加速度测试系统设计1.简介现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动态测试问题。

所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。

它以动态信号为特征,研究了测试系统的动态特性问题,而动态测试中振动和冲击的精确测量尤其重要。

振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。

压电式传感器是基于某些介质材料的压电效应,当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。

压电式传感器具有体积小,质量轻,工作频带宽,结构简单,成本低,性能稳定等特点,因此在各种动态力、机械冲击与振动的测量以及声学、医学、力学、宇航等方面都得到了非常广泛的应用。

所以在此设计了一种压电式加速度测试系统,能够满足测试0—3G的低频率加速度测试。

2.测试方案设计系统组成:压电加速度传感器、电荷放大器、动态信号分析仪被测对象的振动加速度信号经传感器拾振,由传感器电缆将加速度信号送入该系统电荷放大器,电荷放大器将信号转换成电压信号并放大,通过数据采集测试仪采样,便实现对信号的采集。

最后在PC端对实验数据进行处理并显示。

如下图所示3.测试系统组成3.1压电加速度传感器3.1.1组成由质量块、压电元件、支座以及引线组成如下图所示3.1.2工作原理压电加速度传感器采用具有压电效应的压电材料作基本元件,是以压电材料受力后在其表面产生电荷的压电效应为转换原理的传感器。

这些压电材料,当沿着一定方向对其施力而使它变形时,内部就产生极化现象 ,同时在它的两个相对的表面上便产生符号相反的电荷;当外力去掉后,又重新恢复不带电的状态 ;当作用力的方向改变时,电荷的极性也随着改变。

实际测量时,将图中的支座与待测物刚性地固定在一起。

当待测物运动时,支座与待测物以同一加速度运动,压电元件受到质量块与加速度相反方向的惯性力的作用,在晶体的两个表面上产生交变电荷( 电压) 。

当振动频率远低于传感器的固有频率时,传感器的输出电荷( 电压) 与作用力成正比。

电信号经前置放大器放大,即可由一般测量仪器测试出电荷( 电压) 大小 ,从而得出物体的加速度。

压电材料可分为压电晶体和压电陶瓷两大类,因压电陶瓷的压电系数比压电晶体的大,且采用压电陶瓷制作的压电式传感器的灵敏度较高 ,故本系统压电元件采用压电陶瓷 ,极化方向在厚度方向(z 方向) 。

当加速度传感器和被测物一起受到冲击振动时,压电元件受质量块惯性力的作用,根据牛顿第二定律,此惯性力是加速度 的函数。

设质量块作用于压电元件的力为F 上,支座作用于压电元件的力为 F 下,则有F =Ma ( 1 )F = = = ( M + m ) a ( 2 )式中M 为质量块质量;m 为晶片质量 ; a 为物体振动加速度。

由式( 1 ) 、 ( 2 ) 可得晶片中厚度方向( z 方向)任一截面上的力为F=Ma +ma (1一z /d) ( 3 )式中 d 为晶片厚度 。

则平均力为因晶片为压电陶瓷 ,极化方向在厚度方向( z 方向) ,作用力沿着方向,故此时外加应力只有T 3,不等于零 ,其平均值为质量块压电元件支座输出引线式中A为晶片电极面面积。

选用D型压电常数矩阵,得电荷C式中为压电常数。

由于质量块一般采用质量大的金属钨或其他金属制成,而晶片很薄,即有M》m,故式( 6 ) 通常写为由式(7)可知,压电元件的Q和、M 成正比,根据测量电荷量就可得到加速度。

3.1.3灵敏度灵敏度是指其输出电量与所承受的振动(或冲击)加速度的比值。

它是表征加速度传感器性能的最基本的参数。

公式推导:设晶片为压电陶瓷,极化方向在厚度方向(z方向),作用力沿着z 方向可推导出压电陶瓷片产生的电荷为:Q=d33MaM为质量块质量,m为晶片质量,a为物体振动加速度,l为晶片厚度,A为晶片电极面面积a=g(重力加速度)时得到的电荷Q值,常称为灵敏度,单位记为C/g,即灵敏度为一个g产生的电荷。

上式为灵敏度的电荷表示法。

灵敏度亦可用开路输出电压表示,因为式中,Cd为晶片的低频电容(自由电容)所以取a=g,即为灵敏度的电压表示法,即一个g时产生的开路电压,单位记为V/g。

3.1.4 加速器传感器的选用1.工程振动量值的物理参数常用位移、速度和加速度来表示。

由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。

常用单位为:米/秒2 (m/s2),或重力加速度(g)。

描述振动信号的另一重要参数是信号的频率。

绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。

对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。

最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。

压电式加速度传感器因为具有测量频率范围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用方便,所以成为最常用的振动测量传感器。

2.传感器的种类选择·压电式- 原理和特点压电式传感器是利用弹簧质量系统原理。

敏感芯体质量受振动加速度作用后产生一个与加速度成正比的力,压电材料受此力作用后沿其表面形成与这一力成正比的电荷信号。

压电式加速度传感器具有动态范围大、频率范围宽、坚固耐用、受外界干扰小以及压电材料受力自产生电荷信号不需要任何外界电源等特点,是被最为广泛使用的振动测量传感器。

虽然压电式加速度传感器的结构简单,商业化使用历史也很长,但因其性能指标与材料特性、设计和加工工艺密切相关,因此在市场上销售的同类传感器性能的实际参数以及其稳定性和一致性差别非常大。

与压阻和电容式相比,其最大的缺点是压电式加速度传感器不能测量零频率的信号。

·压阻式应变压阻式加速度传感器的敏感芯体为半导体材料制成电阻测量电桥,其结构动态模型仍然是弹簧质量系统。

现代微加工制造技术的发展使压阻形式敏感芯体的设计具有很大的灵活性以适合各种不同的测量要求。

在灵敏度和量程方面,从低灵敏度高量程的冲击测量,到直流高灵敏度的低频测量都有压阻形式的加速度传感器。

同时压阻式加速度传感器测量频率范围也可从直流信号到具有刚度高,测量频率范围到几十千赫兹的高频测量。

超小型化的设计也是压阻式传感器的一个亮点。

需要指出的是尽管压阻敏感芯体的设计和应用具有很大灵活性,但对某个特定设计的压阻式芯体而言其使用范围一般要小于压电型传感器。

压阻式加速度传感器的另一缺点是受温度的影响较大,实用的传感器一般都需要进行温度补偿。

在价格方面,大批量使用的压阻式传感器成本价具有很大的市场竞争力,但对特殊使用的敏感芯体制造成本将远高于压电型加速度传感器。

·电容式电容型加速度传感器的结构形式一般也采用弹簧质量系统。

当质量受加速度作用运动而改变质量块与固定电极之间的间隙进而使电容值变化。

电容式加速度计与其它类型的加速度传感器相比具有灵敏度高、零频响应、环境适应性好等特点,尤其是受温度的影响比较小;但不足之处表现在信号的输入与输出为非线性,量程有限,受电缆的电容影响,以及电容传感器本身是高阻抗信号源,因此电容传感器的输出信号往往需通过后继电路给于改善。

在实际应用中电容式加速度传感器较多地用于低频测量,其通用性不如压电式加速度传感器,且成本也比压电式加速度传感器高得多。

3.压电式传感器的敏感芯体材料和结构形式·压电材料压电材料一般可以分为两大类,即压电晶体和压电陶瓷。

在压电型加速度计的最常用的压电晶体为石英,其特点为工作温度范围宽,性能稳定,因此在实际应用中经常被用作标准传感器的压电材料。

由于石英的压电系数比其他压电材料低得多,因此对通用型压电加速度计而言更为常用的压电材料为压电陶瓷。

压电陶瓷中锆钛酸铅(PZT)是目前压电加速度计中最经常使用的压电材料。

其特点为具有较高的压电系数和居里点,各项机电参数随温度时间等外界条件的变化相对较小。

必须指出的是,就同一品种的压电陶瓷而言,虽然都有相同的基本特性,但由于制作工艺不同可以使两个相同材料的压电陶瓷的具体性能指标相差甚大。

这种现象可以通过典型的国产传感器和进口传感器的比较得以反映,国内振动测试业几十年的经验对此深有体会。

4.传感器敏感芯体的结构形式压电加速度传感器的敏感芯体一般由压电材料和附加质量块组成,当质量块受到加速度作用后便转换成一个与加速度成正比并加载到压电材料上的力,而压电材料受力后在其表面产生一个与加速度成正比的电荷信号。

压电材料的特性决定了作用力可以是受正应力也可以是剪应力,压电材料产生的电荷大小随作用力的方向以及电荷引出表面的位置而变。

根据压电材料不同的受力方法,常用传感器敏感芯体的结构一般有以下三种形式:1)压缩形式–压电材料受到压缩或拉伸力而产生电荷的结构形式。

压缩式敏感芯体是加速度传感器中最为传统的结构形式。

其特点是制造简单方便,能产生较高的自振谐振频率和较宽的频率测量范围。

而最大的缺点是不能有效地排除各种干扰对测量信号的影响。

2)剪切形式–通过对压电材料施加剪切力而产生电荷的结构形式。

从理论上分析在剪切力作用下压电材料产生的电荷信号受外界干扰的影响甚小,因此剪切结构形式成为最为广泛使用的加速度传感器敏感芯体。

然而在实际制造过程中,确保剪切敏感芯体的加速度计持有较高和稳定的频率测量范围却是传感器制造中工艺中最为困难的一个环节。

北智BW-Sensor 采用进口记忆金属材料的紧固件从而保证传感器具有稳定可靠的谐振频率和频率测量范围。

3)弯曲变形梁形式- 压电材料受到弯曲变形而产生电荷的结构形式。

弯曲变形梁结构可产生比较大的电荷输出信号,也较容易实现控制阻尼;但因为其测量频率范围低,更由于此结构不能排除因温度变化而极容易产生的信号漂移,所以此结构在压电型加速度计的设计中很少被采用。

5.压电式加速度传感器的信号输出形式·电荷输出型传统的压电加速度计通过内部敏感芯体输出一个与加速度成正比的电荷信号。

相关主题