当前位置:文档之家› 模拟电子技术实验与课程设计

模拟电子技术实验与课程设计

东华理工大学自编教材模拟电子技术实验指导书与课程设计编者: 刘梅锋李百余朱兆优邓文娟审校:林刚勇东华理工学院电子工程学院二○○六年十月前言《模拟电子技术》是电类专业重要的基础课,也是非电类工科专业的重要学习内容。

模拟电子技术是一门实践性很强的课程,实验是学习电子技术的一个重要环节,它对巩固和加深课堂教学内容、提高学生的实际动手能力和工作技能,培养科学的工作作风具有重要的作用,为今后学好后续课和从事实际技术工作奠定坚实的基础。

本门课程实验内容的安排遵循由浅到深、由易到难的规则,考虑不同层次的需要,既有基本测试验证性的内容,又有设计研究性的内容。

为提高实验的思想性、科学性和启发性,有些实验只提出设计要求及电路原理简图,由学生自己完成方案的选择、实验步骤的安排和实验结果的表格记录等,充分发挥学生的创造性和主观能动性。

本书还编写了基本实验、设计性实验共二十个,还编写了三个模拟电子技术课程设计。

每个实验均可以在模拟电路实验系统中完成,学生可根据情况从中选做,实验前由任课老师根据各专业的具体情况和教学内容确定实验项目,选择实验内容。

本课程是实践性、技能性和理论性很强的学科,必须理论联系实际,在理论知识的指导下,通过实践逐步加深对电子技术理论的理解,勤思考、多动手,不断地发现问题、分析问题和解决问题,注重自己能力的培养,才能有所收益、有所发展、有所创新。

电子技术日新月异,教学改革任重道远,由于水平有限,对书中的错误和缺点恳请读者批评指正,以便今后不断改进。

2006年10月17日目录第一部分模拟电子技术实验 (4)实验一单级放大电路(一) (5)实验二单级放大电路(二) (8)实验三射极跟随器 (10)实验四差动放大电路 (13)实验五积分与微分电路 (16)实验七 RC正弦波振荡器 (22)实验八 LC正弦波振荡电路 (24)实验九比较器 (26)实验十波形发生器 (29)实验十一集成功率放大器 (32)实验十二整流滤波和并联稳压电路 (34)实验十三串联稳压电路 (37)实验十四集成稳压器 (40)实验十五电流/电压转换电路 (44)实验十六电压/频率转换电路 (46)实验十七设计带负反馈的二级放大电路 (48)实验十八运算放大器的应用设计 (50)实验十九互补对称功率放大器 (51)实验二十波形变换电路设计 (53)第二部分模拟电子技术课程设计 (54)课题一多级放大电路的设计 (55)课题二 RC有源滤波器的快速设计 (57)课题三函数发生器 (65)附录一:《模拟电子技术》课程设计报告撰写要求 (69)附录二: 模拟电路实验系统使用说明 (71).第一部分模拟电子技术实验实验一单级放大电路(一)一、实验目的1.熟悉电子元器件和模拟电路实验箱,学习基本放大电路的组成。

2.掌握放大器静态工作点的调试方法及其对放大器性能的影响。

3.学习测量放大器Q点和A v方法,了解共射极电路特性。

二、实验仪器1.示波器2.信号发生器3.万用表4.模拟电路实验箱三、预习要求1.三极管及单管放大器工作原理。

2.放大器动态和静态的测量方法。

四、实验内容及步骤(一)装接电路与简单测量图1-1 工作点稳定的放大电路1.判断实验箱上三极管的极性及好坏,测量+12V电源是否正常以及电解电容的极性和好坏。

2.按图1-1所示连接电路(注意要关断电源之后再接线),R p调到电阻最大位置。

3.接完后仔细检查,经认真检查后方可通电。

(二)静态测量与调整1. 改变R p,记录I c分别为0.8mA、1.2mA、1.6mA、2mA时三极管V的β值。

提示:I b和I c的测量和计算方法①测I b和I c一般可用间接测量法,即通过测V c和V b,R c和R b计算出I b和I c(注意:图1-1中I b为支路电流)。

此法虽不直观,但操作比较简单,建议初学者采用。

②直接测量法,即将微安表和毫安表直接串联在基极(集电极)中测量。

此法直观,但操作不当容易损坏仪器和仪表。

不建议初学者采用。

③测量R b时应关断电源,并断开R p的下端。

2. 调整静态工作点,调R P使V e=1.8V(或使U ce=5~6V),计算并填表1.1.表1.1实测计算U be(v)U ce(v)R b(kΩ)I b(μA)I c(mA)(三)动态研究1.按图1-2所示电路接线,调整Q点(方法同前)。

图1-2 小信号放大电路2.将信号发生器的输出信号调到f=1KHz,U P-P为500mV,接至放大电路的A 点,经过R1、R2衰减(100倍),U i点得到5mV的小信号,观察U i和U o端波形,并比较相位,填表1.2。

3.信号频率不变,逐渐加大信号幅度,观察V o不失真时的最大值并填入表1.2 表1.2五、实验报告1.记录全部的实验测量结果及波形。

2.结合电路理论知识,计算单级放大电路的电压放大倍数,并与实际测量值进行比较,分析误差结果、产生误差的原因及改进办法或方案。

3.按实验内容和测量要求详细写出实验报告。

实验二单级放大电路(二)一、实验目的1.学习测量放大器r i、r0的方法、观察放大器的非线性失真,了解共射极电路特性。

2.学习放大电路的动态性能。

二、实验仪器1.示波器2.信号发生器3.万用表4.模拟电路实验箱三、预习要求1.三极管及单管放大器工作原理。

2.放大器动态和静态的测量方法。

四、实验内容及步骤1.输入电阻测量按图1-1接线。

如图2-1,在输入端串接一个5.1k电阻Rs,测量U s与U i即可计算r ir i=U i/I b I b=(U S-U i)/R S则r i=[U i/(U S-U i)].R S2.输出电阻测量按图1-1接线。

如图2-2,测量有负载和空载时的U0,即可计算出r0,将上述测量及计算结果填入表2.1中。

r0=[(U0-U L)/U L]R L=(U0/U L-1)R L表2.13.按图1-2接线,保持U i=5mv不变,放大器接入负载R L,按表2.2中给定不同参数的情况下测量Ui和Uo,并将计算结果填表中。

表2.24.保持U i=5mv不变,转动电位器以增大或减小Rp,观察输出端U o波形的变化,并用万用表测量三极管V b、V c、V e的值,并填入表2.3中。

表2.3 (注意:如果截止失真不明显可适当增加输入信号的幅度.)五、实验报告1. 记录全部的实验测量结果及波形。

2. 结合电路理论知识,计算单级放大电路的输入电阻、输出电阻,并与实际测量值进行比较,分析误差结果、产生误差的原因及改进办法或方案。

3. 按实验内容和测量要求详细写出的实验报告。

实验三射极跟随器一、实验目的1.掌握射极跟随器的特性和测量方法。

2.进一步学习放大器中各项参数的测量方法。

二、实验仪器1.示波器2.函数发生器3.万用表4.模拟电路实验箱三、预习要求1.参照教材有关章节内容,熟悉射极跟随器原理及特点。

2.根据图3-1元器件参数,估算静态工作点,画出交、直流负载线。

图3-1 射极跟随器四、实验内容1.按图3-1电路接线。

2.直流工作点的调整。

接上电源,将电源开关合上,在B点输入频率f=1KHz正弦波信号,电路的输出端用示波器观测,反复调节电位器Rp4及信号源的输出幅度,使电路的输出幅度在示波器屏幕上得到一个最大不失真波形,然后断开输入信号,用万用表测量晶体管各极对地的电位,测量的结果即为该放大器静态工作点,将所测数据填入表3-1中。

(也可按照前面所学的方法调整Q点.)表3-13.测量电压放大倍数A V接入负载R L=1KΩ,在B点输入频率为f=1KHz正弦波信号,调节输入信号幅度(此时电位器Rp4不能再旋动),用示波器观察,在输出最大不失真情况下,测量U i,U L 的值,将所测数据填入表3-2中。

表3-24.测量输出电阻r o在B点输入频率为f=1KHz的正弦波信号,幅度U i=100mv左右,当断开和接上负载R L=2.2KΩ时,用示波器观测输出波形,分别测出空载时输出电压U o(R L=∞)和有负载输出电压U L(R L=2.2KΩ)值,则ro=(Uo/U L-1)R L将所测数据填写入表3-3中。

表3-35.测量放大器输入电阻r i(采用换算法)在电路输入端串入一个5.1K电阻(如图3-1),从A点加入频率为f=1KHz的正弦信号,用示波器观察输出波形,再分别用示波器测量A点、B点波形的幅值U s、U i. 则r i= [U i/(U s-U i)].Rs.将测量数据填写入表3-4中。

表3-46.测量射极跟随器的跟随特性在电路的输出端接入负载RL=2.2KΩ,在B点加入频率为f=1KHz正弦信号,逐渐增大输入信号幅度U i,用示波器观测电路的输出端,在保证输出波形不失真的情况下,测出对应的U L值,根据测量结果计算Av电压放大倍数。

将所测数据填写入表3-5中。

表3-5五、实验报告要求1.给出实验原理图,标明实验的元件数值。

2.整理实验数据,说明实验中出现的各种现象,得出有关的结论,画出必要的波形曲线。

3.将实验结果与理论计算比较,分析产生误差的原因。

实验四差动放大电路一、实验目的1.熟悉差动放大器工作原理2.掌握差动放大器的基本测试方法二、实验仪器1.示波器2.函数发生器3.万用表4.模拟电路实验箱三、预习要求1.计算图4-1的静态工作点(设r be=3K,β=100)及电压放大倍数在图4-1基础上画出单端输入和共模输入的电路四、实验内容及步骤差动放大原理实验电路如图4-1所示。

图4-1 差动放大电路原理图(一)测量静态工作点①调零将输入端短路并接地(即b1-b2短路并接地),接通直流电源,调节电位器Rp1使差动放大电路的双端输出电压Uo=0。

②测量静态工作点用万用表测量三个三极管(T1、T2、T3)各极对地的电压,并填入表4-1中。

表4-1(二)测量差模电压放大倍数在输入端加入直流电压信号Vid=±0.1V(即Vb1=0.1V,Vb2=-0.1V)按表4-2要求,用万用表测量差动放大器单端和双端输出电压并记录,由测量数据计算出单端和双端输出的电压放大倍数。

(注意:差动放大器输入的直流电压信号从实验箱OUT1和OUT2上接入,调节电位器可改变直流信号的大小和极性,使OUT1和OUT2分别调为+0.1V和-0.1V再接入到差动放大器的Vb1和Vb2输入端。

)表4-2 (注意:电压放大倍数=输出变化量/输入变化量)(三)测量共模电压放大倍数调节好的OUT1和OUT2值不变,将输入端b1、b2短接,先后分别接到信号源OUT1和OUT2上,再分别用万用表测量出差放电路共模输入时的单端和双端输出的电压信号,并填入表4-3中,由测量数据计算出单端和双端输出的电压放大倍数,进一步再计算出共模抑制比CMRR=|Ad/Ac|。

相关主题