当前位置:文档之家› 金属基复合材料界面表征及其进展

金属基复合材料界面表征及其进展

第14卷第3期V o l.14N o.3材 料 科 学 与 工 程M aterials Science&Engineering总第55期Sep t.1996金属基复合材料界面表征及其进展梅 志 顾明元 吴人洁上海交通大学 上海 200030【摘 要】 界面是复合材料极其重要的组成部分,全面而确切地表征界面是控制和改善复合材料的最重要基础之一。

本文从界面组成及成分变化、界面区的位错分布、界面残余应力的测定和界面结构的高分辨观察及其原子模拟等四个方面综述了金属基复合材料界面表征的方法及其最新进展。

【关键词】 金属基复合材料 界面表征Character ization of M etal M atr ix Com posite I n terfaceand Its AdvancesM e i Zh i Gu M i ngyuan W u Ren j ieShangha i J i ao-tong Un iversity,Shangha i 200030【Abstract】 A s interface is very i m po rtant in compo site m aterial,characterizing interface all2 sidedly and exactly is one of the mo st i m po rtant bases of contro lling and i m p roving compo site m a2terials.In th is paper the m ethods and its latest developm ents of the characterizati on ofM M C′s in2terface are review ed.there are four m ain m ethods to characterize the interface;(1)to analysephase structure、compo siti on of interface;(2)to deter m ine dislocati on distributi on in the interfaceregi o;(3)to m easure interface residual stress;(4)to m anifest the interfacial structure w ith h ighreso luti on observati on and w ith atom ic si m ulati on of interface structure.T hey are introduced in o r2der.【Key words】 M etal m atrix compo site,Interface characterizati on.一、引 言界面是复合材料特有的而且是极其重要的组成部分,复合材料的性能与界面性质密切相关。

由于界面的原子结构、化学成分和原子键合不同于界面两侧的增强体和基体,界面的性质与界面两侧有很大的差别,而且在界面上更容易发生化学反应,所以界面对复合材料的性能起着极其重要的作用,有时甚至能起控制作用。

因此,只有深入了解界面的几何特征、化学键合、界面结构、界面的化学缺陷与结构缺陷、界面稳定性与界面反应及其影响因素,才能在更深的层次上理解界面与材料性能之间的关系,进一步达到利用“界面工程”发展新型高性能复合材料的目的。

与此同时,界面研究的成果不仅会给复合机理的研究带来促进作用,而且这项工作的深入开展还关系到研究物质表面结构与性能的现代新技术和新仪器的进展。

界面结构的研究是当前材料科学的前沿课题,人们对界面的相组成和结构、界面区的成分及其分布、近界面基体一侧的位错密度及其分布等以及它们与材料总体性能之间的关系进行了广泛研究。

然而,过去由于实验手段的限制,以往的研究工作大部分停留在微米尺度,而大量的精细结构被掩盖。

近年来,随着高分辨电子显微术(HR E M)及分析电子显微术(如EEL S、A P2F I M等)的发展,使得在原子尺度研究界面结构、界面化学及界面缺陷成为可能,再配合以其它微区形貌、结构和成分分析的手段,并加以综合应用,相互补充,使得对界面结构有了更深入的了解,取得了一些令人鼓舞的进展。

下面将从四个方面加以介绍。

二、界面层相组成及成分变化确定界面上有无新相形成是界面表征的主要内容之一。

这种析出物可能是增强体与基体通过扩散反应而在界面处形成的新相,也可能是基体组元与相界处杂质元素反应在界面处优先形核而成为新相。

一般情况下常用明场像或暗场像对界面附近区域形貌进行观察,通过选区衍射和X射线能谱进行微区结构和成分分析。

当析出物十分细小时,可采用微衍射和电子能量损失谱来分析其结构和成分,电子能量损失谱尤其适合于对C、O等轻元素的分析。

这种综合分析可以准确判知界面析出物的结构、成分和形貌特征,如文献[1]中就用X射线能谱、电子能量损失谱和微衍射等分析手段确认界面上存在细小M gO相,就是一个很好的实例。

界面上析出相不可避免地会对复合材料性能产生影响,有时甚至直接影响到材料性能的高低。

例如文献[2]在研究A l Si Cw界面组织与复合材料力学性能关系时,运用修正的混合规则(ROM)来研究拉伸强度的计算值与实验值的对比符合情况,结果发现对A l2Cu基体两者符合很好,而对A l2Cu2M g基体两者有较大偏差。

经显微组织观察,发现该偏差是由于界面上形成氧化物和尖晶石而造成晶须强度下降所致。

因此应用混合规则时必须考虑界面相对复合材料强度的影响,从而为今后复合材料基体合金的设计提供参考。

除此之外,增强体的加入也会影响到复合材料基体合金中固溶原子的分布,从而也会对复合材料性能产生影响,例如,用液体金属浸渗法制造纤维增强复合材料时,由于纤维排列对金属凝固的限制,导致基体中合金成分变化,甚至有未预料到的第二相形成在纤维 基体界面上,结果基体中合金元素浓度降低。

而起硬化作用析出物的形成,又要求有一活泼合金元素的临界值,所以以上成分变化会显著改变基体合金的时效硬化响应[3]。

大量报导证明,陶瓷增强体的存在会影响A l合金中固溶原子的分布,Strangw ood等[4]在研究Si C2A l合金界面上的固溶偏析时发现,在欠时效15V o l%Si C-2XXXA l(1.45at%Cu, 1.67at%M g,0.12at%Zr,0.1at%M n)的Si C 基体界面上的固溶偏析可达4.5at%M g和9at%Cu,而M g和Cu偏析都可降低界面区域附近A l基体的局部熔点,因此,尽管当温度似乎仍处于2124A l的固态范围时,固溶偏析可能严重到引起Si C2A l界面局部熔化的程度,从而可以解释该材料在高应变速率超塑性试验中的一些令人困惑的现象[4]。

我校金属基复合材料国家重点实验室利用电子能量损失谱仪,研究了T i C粒子强化I M I2 829T i合金,结果发现T i C粒子表面存在一明显的碳浓度梯度,贫碳区厚度与材料制备工艺和热处理过程有关,结合C2T i相图分析,提出基体和增强体之间C和T i的互相扩散,形成一理想的溶解型结合是该复合材料性能良好的原因[5]。

三、界面区的位错分布界面区近基体侧的位错分布是界面表征的又一重点,它有助于了解复合材料的强化机制。

经验表明,为了能更清晰地显示出位错分布的特征并便于定量测定位错密度,采用弱束成象效果较好。

过去,人们一直认为复合材料强度提高(实验强度值高于理论预测值)是由于位错使基体强化所致,并且在许多实验中也确实观察到了增强体周围较高的位错密度。

虽然后来发现,基体中亚晶尺寸减小也是复合材料强化的一个重要原因,但位错强化仍然是复合材料强化的重要机制之一。

采用高压电镜对A l Si Cw复合材料界面的原位观测证明:由于两种异质材料热膨胀系数不同,在复合制备冷却中界面处形成的位错,在加热到一定温度后会自行消失,但在重新冷却下来时又会再次产生。

这种复合材料中,位错密度可高达1013~1014m-2,是造成这类复合材料高强度的重要原因之一[6]。

近来,有人[7]对不连续碳化硅增强A l合金屈服应力增加的原因进行了定量研究,发现屈服应力增加幅度明显与Si C体积分数和颗粒大小有关。

实验结果表明,位错密度随Si C体积分数增加而增加、随粒子尺寸增加而减少。

亚晶尺寸随碳化硅体积分数和颗粒尺寸变化的趋势正好与位错密度相反。

林君山等[8]在研究铸造Si Cp 2024合金材料微观结构与强化机制时认为,由增强相导致的应力集中和基体形变的高约束度,是控制Si Cp 2024复合材料形变与强化的两个主要因素。

可以预料,今后对界面区位错分布的观察重点将转到研究位错产生、发展的影响因素上来,并有从定性发展到定量研究的趋势,并在可能的条件下,尽量采用高压电镜来观察较厚的薄膜试样,以尽可能真实地反映位错密度大小。

另外,对复合材料强化机制的研究也开始注意全面考察基体中组织变化带来的变化,而不再只考虑位错密度变化所造成的强化,表明人们对复合材料的强化机制有了一个更深刻的认识。

四、界面残余应力的测定复合材料的界面结合与该处的残余应力密切相关。

对界面处内应力的测量,除了我们所熟知的沿用非破坏性测量材料残余应力的X射线方法外,还有用中子衍射测残余应力的方法,近年来又发展了用会聚束电子衍射及同步辐射连续X射线测残余应变的方法。

目前对金属基复合材料来说,残余应力的测定主要还是采用单一波长的特征X射线的sin2Ω法[9]。

它所测出的是界面两侧一定厚度范围内的平均残余应力,而要确知在界面处的应力仍较困难,尤其是对增强体附近急剧变化的应变场的测量无能为力。

中子衍射[10]则利用中子对材料的高穿透性来测量残余应力。

这种方法虽能测量材料内部的应变,但它所测的是体积平均应力,所以它也不能解决增强体周围急剧变化应力的测量问题。

为解决这个问题,Todd等[11]采用高强度的同步辐射连续X射线,利用其能量色散衍射同时兼有较好穿透性(例如可穿透钛数毫米)和对残余应变梯度具有的高空间分辨率,测定了金属基复合材料内部连续增强体附近的残余应变梯度,其精度可达10-3到10-4,取得了满意的效果。

但这种方法的致命缺点是成本太高。

另外一些研究者则试图用会聚束电子衍射的方法来测定界面残余应力,并取得了可喜的进展。

如王仁卉[12]利用大角度会聚束电子衍射(LA CB ED)研究了A l A l2O3复合材料界面应力场,发现由于界面处存在应力场,引起界面附近的高阶劳厄线(HOL Z线)发生明显的弯曲和分裂并变得模糊,目前作者正通过对LA CB ED花样的动力学模拟来对界面处的应力场作进一步的研究。

相关主题