霍尔效应在车速传感器中的应用
摘要:霍尔传感器是利用霍尔效应实现磁电转换的一种传感器,它具有无触点、灵敏度高、线性度好、稳定性高、体积小和耐高温等特点,在车速测量中占有非常重要的地位。
关键词:霍尔效应霍尔传感器轮速
1.前言
当前汽车车速传感器多采用霍尔式原理, 此传感器是一种基于霍尔效应的传感器, 具有对磁场敏感度高、输出信号稳定、频率响应快、抗电磁干扰能力强、结构简单、使用方便、无触点等特点。
它主要是由特定磁极对数的永久磁铁( 一般为4 或8 对) 、霍尔元件、旋转机构及输入/输出插件等组成[1] 。
其工作原理是当传感器的旋转机构在外驱动作用下旋转时, 会带动永久磁铁旋转,
穿过霍尔元件的磁场将产生周期性变化, 引起霍尔元件输出电压
变化, 通过后续电路处理形成稳定的脉冲电压信号, 作为车速传
感器的输出信号。
2.霍尔传感器
霍尔传感器是把霍尔元件、温度补偿电路、放大器及稳压电源等集成在一个芯片上,然后封装起来构成的. 由于霍尔传感器测量方式属于补偿式测量[2]。
霍尔传感器分为线性和开关型两种,线性霍尔传感器主要用于位移、压力、电功率等测量,开关型霍尔传感器主要用于转速、转角、液位等测量。
将载流导体或半导体板放在磁场中, 使磁场方向垂直于电流方
向, 在导体板两侧ab 之间就会出现横向电势差u。
这种现象是霍
尔首先发现的, 因此,称之为霍尔效应,如图1所示,板两侧形成
的电势差称u 为霍尔电压。
图1 霍尔效应图 2 霍尔转数传感器结构原理
(1)
式中: i: 控制电流 e0: 电子电荷量;b: 磁感应强度;d: 半
导体的厚度;n: 电子浓度。
由霍尔原理可知, 霍尔传感器的输出电压u 与被测物体的运动
速度无关, 因此它的高、低速特性都很好, 若用其测量物体的转速, 其下限速度可以接近于0,上线速度从理论上讲可以不受限制, 即
它可以满足工程中各种运行速度的测量。
正因为如此, 汽车上的车速传感器大多采用霍尔式传感器。
用霍尔元件作为汽车的车轮转速传感器时, 多采用磁感应强度
作输人信号, 且如图2所示结构为多[3]。
图2a是在旋转盘上贴上若干个永久磁钢, 把霍尔集成式传感器固定在转盘贴有磁钢的圆
弧上方, 离磁钢的距离可控制在2mm左右。
当转盘转动, 磁钢依次经过传感器, 传感器电路中便同步产生一个霍尔电势脉冲, 经霍
尔集成电路内部的放大、整形后, 向外输出一个高电频的脉冲序列, 其占空比随转盘的角速度而变化。
其每转的脉冲数等同于磁体上的磁对极数。
图2b即将磁体与霍尔元件做成一体, 以齿盘转动来改
变磁阻, 测取霍尔电势脉冲。
磁铁n极与s 极的距离等于齿距。
霍尔元件粘贴在磁极的端面。
齿轮每转过一个齿,霍尔元件便输出一
个电脉冲,测定脉冲信号的频率便可得到转速值。
3.轮速算法
3.1 测频率法。
最简单的方法就是测频率法,即利用一段固定时间间隔内的编码器产生的输出脉冲数来确定转速。
(2)式中::△t时间间隔内的轮速平均值;△t:进行脉冲累计的时间间隔;n:△t内发生的脉冲数。
增大累计时间间隔△t,可以使绝对误差减小,同时, 也可能使数到的脉冲数增多, 相对误差值也可能减小。
但由于(2)式计算的速度是作为△t的中间时刻瞬时轮速的估计值,当△t 增大时,这种估计就越来越不精确。
另一方面,当车速较低时,即使时间间隔设得较大, 仍不能数得较多的脉冲, 在低速时速度计算的相对误差将变大。
因此测频率法较适合于高速测量。
3.2 测周期法。
它是测量霍尔传感器所产生的相邻两个转速脉冲信号的时间来确定转速。
相邻两个转速脉冲信号时间的测量是采用对已知高频脉冲信号进行计数来实现的。
(3)
式中:t:检测高频脉冲信号周期;m:图3中之间的检测周期数。
图3 测周期法示意图
缩短检测周期t,m增大,绝对误差和相对误差都会减小,对一定值t,当轮速减小,有效脉冲法的相对误差和绝对误差减小。
3.4测频率/周期法
以上对两种轮速数据计算处理方法的讨论表明,可以在高速时采用测频率法, 而在低速时采用周期法。
由于同时对两种脉冲信号进行计数,因此只要“同时性”处理得当测频率/周期法在高速和低速时都具有较高的测速精度。
[4]
参考文献:
[1]郑发农.电子式车速里程表[j].自动化仪表, 2000,21( 6) : 19 20
[2]秦祖荫.霍尔电流传感器的性能及其使用[j].电力电子技术,1994,(4):63-65.
[3]李令举.汽车工程电子新技术人民交通出版社,1995
[4]沙占友.集成化智能传感器原理及应用[m ].北京:电子工业出版社, 2004.
[5]麻友良.汽车电器与电子控制系统[m].北京:机械工业出版社,2006.
[6]王瑛,王旭东哈尔滨商业大学学报(自然科学版)2006.10.。