当前位置:文档之家› 高产高效矿井的瓦斯综合防治技术

高产高效矿井的瓦斯综合防治技术

高产高效矿井的瓦斯综合防治技术Last revision date: 13 December 2020.高产高效矿井的瓦斯综合防治技术作者:王春光摘要:随着煤炭企业的发展,部分矿井已经进入深部开采,加上大型矿井的不断建设,瓦斯灾害已经成为矿井开采发展的主要障碍,文章分析了高产高效工作面涌出瓦斯的来源及涌出规律从不同的方面介绍现代化高产高效矿井的瓦斯综合防治技术。

关键词:高产高效;瓦斯;上隅角;采空区;综合防治高产高效工作面通常指煤层瓦斯含量不大,但由于机械化程度高,开采强度大、产量集中,在生产过程中,瓦斯涌出量较大,经常造成上隅角和回风瓦斯超限的工作面。

在全国51个高产高效工作面矿井中,有17个属于高瓦斯或瓦斯突出矿井,占总数的33%,有68%的高产高效工作面存在着严重的瓦斯超限问题。

在低瓦斯矿井,高产高效工作面由于瓦斯超限影响生产的时间约为正常时间的1/8~1/12,而在高瓦斯矿井或突出矿井,则高达1/3~1/4。

瓦斯问题成为制约高产高效的主要障碍。

掌握高产高效工作面瓦斯来源构成、瓦斯涌出特征、时空分布的规律以及瓦斯涌出与开采技术条件和地质因素的关系,可为研究高产高效工作面瓦斯综合治理方案提供可靠依据。

1 高产高效工作面瓦斯涌出规律与其他采掘工作面相比,高产高效工作面有以下基本特点:采用综合机械采煤,机组割煤比较连续、工作面推进速度快、采落煤块较小、粉煤较多、工作面长度大、走向长度长、采用胶带运输机运煤速度快。

例如平顶山矿区煤层瓦斯含量不是很高,但由于开采强度大,产量集中,加之厚煤层分层开采或邻近层太近,使瓦斯涌出量急剧增加,造成回风巷和局部瓦斯集聚(尤其是上隅角)。

高产高效工作面的瓦斯来源研究工作面瓦斯的来源,查明各个来源的涌出比例,然后分源进行治理,对瓦斯防治工作很有意义。

研究表明,含瓦斯煤层在开采时,受采掘作业影响,煤层及围岩中的瓦斯赋存平衡条件遭到破坏,受采动影响区域内的煤层、围岩中的瓦斯将涌入工作面,构成采掘工作面瓦斯涌出的组成部分。

采场范围内涌出瓦斯的地点即为瓦斯源。

很显然瓦斯涌出源的多少、各源涌出瓦斯量的大小直接影响采场的瓦斯涌出量。

研究表明,回采工作面瓦斯涌出关系如图1所示。

图1 高产高效工作面的瓦斯来源构成示意图由图1可以看出,回采工作面瓦斯涌出包括3部分,即落煤瓦斯涌出、煤壁瓦斯涌出、采空区瓦斯涌出。

采空区瓦斯涌出又由3部分组成,即围岩瓦斯涌出、回采丢煤瓦斯涌出、邻近层瓦斯涌出。

这3部分瓦斯随着采场内煤、岩层的变形或垮落而卸压。

按各自的规律涌入采空区,混合在一起。

然后,在浓度差,主要是矿井通风负压的作用下涌向工作面。

下面将主要阐述高产高效工作面煤壁、落煤、采空区3部分的瓦斯涌出规律。

高产高效工作面瓦斯涌出规律(1)煤壁瓦斯涌出规律。

当割煤机不断割煤,新鲜煤壁不断暴露,在矿山压力的作用下,工作面前方煤体中的应力平衡状态遭到破坏,出现了透气性大大增加的卸压带,由于煤体内部到煤壁之间存在着瓦斯压力梯度,瓦斯得以沿卸压带的裂隙向工作面涌出。

瓦斯涌出强度随着煤壁暴露时间的延长而降低。

(2)采落煤块的瓦斯涌出规律。

采煤机落煤把煤粉碎成各种块粒状煤,提高了煤的瓦斯解吸强度,导致瓦斯涌出量的增加。

研究表明,采落煤块的瓦斯涌出强度与煤壁一样,也随时间的增加而减少。

(3)采空区瓦斯涌出规律。

采空区的瓦斯浓度随采空区深度的增加而增高,即离采掘面越远瓦斯浓度越高;采空区内顶板瓦斯浓度高于底板瓦斯浓度;采掘面采用上行通风时,采空区上部(回风侧)瓦斯浓度比下部高。

由采空区瓦斯涌出的来源可知,采空区瓦斯涌出也是由煤块和煤层暴露面等涌出构成,因此也和落煤、煤壁是按同一形式衰减曲线逐渐枯竭的。

研究表明,在工作面初采时,从开切眼开始向前推进,采空区从无到有,随着采空区面积的扩大,采空区瓦斯也逐渐增大,在老顶首次垮落之前采空区瓦斯涌出量较小,当老顶初次垮落后,采空区瓦斯涌出量出现一个峰值,随工作面推进,采空区瓦斯涌出量又增加,随后涌出量又减少,以后发生周期性老顶冒落时,瓦斯涌出量也出现上述的周期变化。

但增加到一定值时,在开采条件基本不变的条件下,采空区瓦斯涌出量将趋于稳定。

2 高产高效工作面瓦斯综合治理目前国内瓦斯治理措施主要有抑制瓦斯涌出及减小工作面瓦斯涌出2类。

抑制瓦斯涌出主要有采用煤体注水等方法。

减小工作面瓦斯涌出主要有改善通风系统,减少通风设施的漏风量,减小通风阻力;改变通风方式,增加进风巷或回风巷,采用均压通风;采用尾巷、高抽巷;采用地面钻孔、顶板走向钻孔、高位钻孔;预抽煤层瓦斯等方法。

抑制瓦斯涌出适用于工作面瓦斯涌出量不大时使用。

减小工作面瓦斯涌出则是治理高产高效工作面瓦斯的根本措施。

目前应用较多的则是采用预抽煤层瓦斯和采用顶板走向钻孔以及采用尾巷、高抽巷等方式治理采空区涌出瓦斯。

预抽煤层瓦斯一般在瓦斯含量较大,煤层透气性系数较高煤层中使用,而对于瓦斯含量较小的煤层使用效果不明显。

顶板走向钻孔、地面钻孔及尾巷抽放则主要是针对采空区瓦斯抽放。

由于高产高效开采一般采空区遗煤较多,采空区瓦斯涌出较大,因此顶板走向钻孔及尾巷抽放效果较好,应用十分广泛。

工作面通风优化由于工作面通风不合理可能造成瓦斯积聚和超限,可以通过改变通风方式、增大风量、减少漏风等措施使风量能够解决较大的瓦斯。

山西潞安矿业集团王庄矿6108综采面为解决综采回风隅角的瓦斯超限,在6108距切眼20m处掘一横贯与老空区贯通,61下山放水巷车场密闭打开一个面积约为0.9m2的通风口,这样6108工作面风流分为两部分:一部分经回风巷进入61采区回风巷;另一部分经采空区和61下山放水巷进入61采区回风巷,对采空区瓦斯实现了分流治理(见图2)。

该工作面于2000年6月开始回采,到2001年中旬回采完毕,没有出现瓦斯超限现象。

图2 6108工作面通风示意图回采期间,工作面的供风量平均为1280m3/min,其中,回风巷回风1150m3/min,61下山放水巷分流回风量130m3/min,占工作面总风量的10%。

工作面平均瓦斯涌出量5m3/min,最大瓦斯涌出量达到9.3m3/min,分流瓦斯量平均1.2m3/min,最大分流量2m3/min,平均分流量24%。

利用钻孔抽放减少瓦斯向工作面涌出钻孔抽放是随着钻探设备发展而发展的,由于其操作简便、节省工作量、成本较低,在许多矿区应用越来越广泛。

钻孔分为地面钻孔、穿层钻孔、顺层钻孔等。

穿层钻孔又分为高位钻孔和低位钻孔,顺层钻孔分为平行钻孔和交叉钻孔。

2.2.1 地面钻孔由于采动影响,在煤层的顶板和底板的围岩内产生裂隙,特别在采空区上方形成冒落带和裂隙带,造成邻近煤层的卸压,引起瓦斯的卸压流动效应,邻近煤层与围岩中的大量卸压瓦斯,通过层间的裂隙涌向开采层的回采面。

瓦斯涌入量的大小与邻近煤层的层数、层间距及岩性、煤层厚度及瓦斯含量有关,还和开采层采高、倾角、工作面走向、倾斜长度、顶板管理方法等有关。

工作面回采过程中,地面钻孔主要抽出上裂隙带卸压层内的高浓度瓦斯,截阻其向采面的涌入。

此间冒落带煤层内的瓦斯和下邻近煤层的卸压瓦斯大量地涌入工作面采空区,并随着工作面的不断推进,采空区冒落高度和范围逐渐增大,通风负压逐渐变弱。

当地面钻孔抽放负压大于井下通风负压时,地面钻孔将连续抽出积存于采空区内的瓦斯。

在工作面采完后,上、下邻近层的瓦斯继续向采空区涌入,封闭采掘面后,地面钻孔可以长期抽放老空区瓦斯。

在邻近采诀面开采时,采空区互相连通,钻孔还可以抽出邻近采区的采空区瓦斯。

从以上分析可以看出,地面钻孔无论在工作面回采期间,还是在工作面采完后,都可以长期抽出邻近层和采空区的瓦斯,降低涌入开采巷道的瓦斯量和风流中的瓦斯浓度,减轻通风负担,保证安全生产。

由于地面钻孔的钻孔成本较高,在我国应用不多,主要在我国平顶山矿业集团、阳泉矿业集团和宁夏煤业集团等地应用。

平顶山十矿-320m水平戊10-20100工作面应用了地面钻孔进行抽放。

通过计算该矿瓦斯涌出量为~28.8m3/min,通风能够排出13m3/min,这说明单靠通风不能解决瓦斯问题,必须进行抽放,抽放纯量为~15.8m3/min。

该工作面于1999年4月3日开始回采,4月23日地面钻孔开始抽放瓦斯,连续抽放效果显着。

1个月抽出纯瓦斯7万m3,抽放参数见表1。

抽放瓦斯浓度、纯瓦斯流量变化曲线如图3所示。

表1 钻孔参数表图3 抽放瓦斯浓度、纯瓦斯流量变化曲线图抽放回采工作面回风流瓦斯浓度比抽放前降低%左右。

抽放前回采工作面产量由于受瓦斯超限的制约,不能达到设计能力;抽放后由于工作面瓦斯浓度的降低,使工作面平均日产量由1800t增加到2600t。

高位钻孔抽放高位钻孔是在风巷向煤层顶板施工的钻孔。

高位钻孔瓦斯抽放又称顶板裂隙带抽放,主要作用是以工作面回采采动压力形成的顶板裂隙作为通道来抽放工作面煤壁及上隅角涌出的瓦斯。

根据一系列回采工作面矿山压力规律的研究,煤层随工作面回采,在工作面周围将形成一个采动压力场,采动压力场及其影响范围在垂直方向上形成3个带,即冒落带、裂隙带和变曲下沉带。

在水平方向上形成3个区,即煤壁支撑影响区、离层区和重新压实区。

在这个采动压力场中形成的裂隙空间,便成为瓦斯流动通道。

通过钻孔内的负压,加速了瓦斯的流动,使高位钻孔能够抽出瓦斯,并且抽放量大大超过本煤层瓦斯的抽放量。

一些高位钻孔实现了超前抽放,即工作面离钻孔口还有一段距离时,能抽出高浓度瓦斯,这说明煤、壁支撑影响区内煤层顶板已有裂隙作为瓦斯通道。

这部分瓦斯显然是煤壁中原始煤体释放的。

随着采动影响,工作面煤壁受压形成瓦斯解吸,解吸的瓦斯又通过煤壁裂隙和顶板裂隙流入抽放钻孔,这是高位钻孔能抽到高浓度瓦斯的原因,也是高位钻孔的重要作用点。

高位钻孔抽到上隅角瓦斯是在钻孔的后期,随着钻孔的垂高变小,到接近冒落带或进入冒落带时才出现,这时抽放瓦斯浓度变小。

只要钻场钻孔还保留,仍能够发挥作用。

利用高位钻孔抽放瓦斯是有效解决工作面瓦斯超限问题的一项重要措施。

积聚在采空区顶板裂隙带的瓦斯量非常大,在井下通风压力变化时这些瓦斯容易流动到采煤工作面,造成工作面瓦斯严重超限。

为了实现最佳的高位钻孔瓦斯抽放效果,需要对高位钻孔进行抽放参数优化设计和试验工作。

抽放高度主要取决于裂隙带的高度和裂隙带的可抽高度。

为了求得可抽高度,进行了多种孔深的抽放试验,并把某个范围内能抽到高浓度瓦斯的高度称为可抽高度。

用终孔高度(H1)、高浓度起点高度(H2)和高浓度终点(H3)3个参数来控制可抽高度指标。

在平煤集团高位钻孔瓦斯抽放最大高度为24m,高浓度终点最小高度为6.4m,因此可以将高位钻孔抽放高度区间确定为~24m。

钻孔终点高度确定为25m。

有效平距包括孔外抽放平距和孔内抽放平距。

孔内抽放是指当采面推进到钻孔终点位置后才能抽放出瓦斯;孔外抽放是指当采面距钻孔终点位置还有一段距离,由于有裂隙带的作用,能超前抽出瓦斯。

相关主题